Онлайн калькулятор тепловой расчет стены: SmartCalc. Расчет утепления и точки росы для строящих свой дом. СНИП.

Содержание

Сортамент металлопроката

Сортамент металлопроката

  • Уголок
    • Уголок равнополочный по ГОСТ 8509-93
    • Уголок неравнополочный по ГОСТ 8510-86
  • Швеллер
    • Швеллеp с паpаллельными гpанями полок по ГОСТ 8240-97
    • Швеллеp с уклоном полок по ГОСТ 8240-97
    • Швеллеpы экономичные с паpаллельными гpанями полок по ГОСТ 8240-97
    • Швеллеpы специальные по ГОСТ 8240-97
    • Швеллеpы легкой серии с параллельными гранями полок по ГОСТ 8240-97
    • Гнутый равнополочный швеллер по ГОСТ 8278-83 из сталей С239-С245
    • Гнутый равнополочный швеллер по ГОСТ 8278-83 из сталей С255-С275
  • Двутавр
    • Двутавp колонный (К) по ГОСТ 26020-83
    • Двутавp с уклоном полок по ГОСТ 8239-89
    • Двутавp дополнительной серии (Д) по ГОСТ 26020-83
    • Двутавp нормальный (Б) по ГОСТ 26020-83
    • Двутавp широкополочный по ГОСТ 26020-83
    • Двутавp нормальный (Б) по СТО АСЧМ 20-93
    • Двутавp широкополочный (Ш) по СТО АСЧМ 20-93
    • Двутавp колонный (К) по СТО АСЧМ 20-93
  • Трубы круглые
    • Тpубы электросварные прямошовные по ГОСТ 10704-91
    • Тpубы бесшовные горячедеформированные по ГОСТ 8732-78
  • Тавр
    • Тавp колонный (КТ) по ТУ 14-2-685-86
    • Тавp ШТ по ТУ 14-2-685-86
  • Трубы прямоугольные
    • Гнутые замкнутые сварные по ГОСТ 30245-2003
    • Прямоугольные трубы по ГОСТ 30245-94
    • Прямоугольные трубы по ГОСТ 25577-83*
    • Трубы стальные прямоугольные по ГОСТ 8645-68
    • Прямоугольные трубы по ГОСТ 12336-66
  • Трубы квадратные
    • Трубы стальные квадратные по ГОСТ 8639-82
    • Гнутые замкнутые сварные по ГОСТ 30245-2003
    • Квадратные трубы по ГОСТ 30245-94
    • Квадратные трубы по ГОСТ 25577-83*
    • Трубы стальные квадратные по ГОСТ 8639-68

 

Расчет массы для L20x3 ГОСТ 8509-93. Укажите длину в метрах Масса кг.

Теплотехнический расчёт

Результат
№ п/пНаименование расчётных параметровОбозначенияЕд. измер.Величина
1Расчётная температура внутреннего воздуха°С 
2Продолжительность отопительного периодаZот.персут 
3Средняя температура наружного воздуха за отопительный периодtот.пер°С 
4Градусо/сутки отопительного периодаГСОП°С · сут
 
№ п/пНаименование расчётных параметровОбозначенияЕд. измер.Величина
1Коэффициент aa 
2Коэффициент bb 
3Требуемое сопротивление теплопередачеRтрм2 · °С/Вт 
№ п/пНаименование расчётных параметровОбозначенияЕд. измер.Величина
1Коэффициент теплоотдачи внутренней поверхности

α

в
Вт/(м2 · С) 8.7
2Коэффициент теплоотдачи наружной поверхности

α

н
Вт/(м2 · С) 

Слои ограждающей конструкции

№ п/пНаименование материалаширина слоя, ммКоэф. теплопроводимости, Вт/(м2 · С)Коэф. паропроницаеомсти, мг/(м·ч·Па)

Теплотехнический расчет ограждающих конструкций онлайн

Теплотехнический расчет выполняют для достижения нормативных величин согласно ДБН В.2.6-31:2006 для Украины, ISO 13370:2007 для стран Европы и СНиП 41-03-2003 для России. Это очень важный момент при начале любом строительства – многоэтажный жилой дом, административное здание либо собственный дом. Многие строят по старинке

«кирпич — воздушная прослойка — кирпич» и не задумываются о расходах на отоплении дома, ведь если хорошо утеплить дом, вы будете меньше платить за отопление. Конечно, вам нужно сначала вложить «кругленькую» сумму в утепление дома, но это лучше чем положить деньги на депозит в банк, с учетом ежегодной инфляции 20%. Причем утепление дома можно разбить на очереди, кроме утепления пола, который перед заливкой бетоном нужно утеплить. Рассмотрим пример постройки дома размером 10 на 11 метров и высотой 6 метров. Стандартное утепление, исходя из практики строительства частных коттеджей в Украине :

  • стены — 240 мм кирпич (черновая кладка), воздушная прослойка — 100 мм, фасадный кирпич – 120 мм;
  • Крыша или перекрытие верхнего этажа 200-300 мм – конструктив, 100 мм утеплителя;
  • Пол – 300 мм бетона, керамзит – 20 мм, утеплитель – 30 мм;
  • Окна – 1 камерные с воздухом.

В начале проектирования системы отопления дома — выполняется теплотехнический расчет ограждающих конструкций, упрощенный теплотехнический расчет онлайн показан ниже. Для нашего примера количество тепловой энергии необходимое для системы отопления дома будет

26,5 кВт

Давайте утеплим дом согласно требованиям ДБН В.2.6-31:2006. Итак после выбора утеплителя и строго придерживаясь требований ДБН получаем : утеплитель для стен – 160 мм, для верхнего перекрытия или крыши – 290 мм, пол – 175 мм. Выполняем теплотехнический расчет онлайн – теперь нам необходимо 13,4 кВт. К примеру, стандартное утепление для северной части Европы для стен – 200 мм, для крыши – 400 мм. Другими словами вы делаете термос, в котором вода очень долго остывает, а в нашейм случае дом больше времени держит тепло. Количество тепловой энергии, которое вы будете потреблять системой отопления, можете самостоятельно рассчитать онлайн нашим приложением.

Хотите заказать проект системы отопления дома перейдите по ссылке.

Стоимость и пример результата расширенного теплотехнического расчета онлайн ограждающих конструкций для проектировщиков, входящий в состав проектной документации в развел «ОВ» (отопление и вентиляции). Оплатить можно при помощи , а также по безналичному расчету.

Возникли вопросы звоните +38(044)331-2057, +38(067)467-5677

Расчет теплопотерь дома: калькулятор онлайн теплотехнического расчета

На чтение 11 мин. Просмотров 1.5k. Обновлено

Для того, чтобы спроектировать систему отопления, которая удовлетворяла бы как требованиям комфортного проживания в доме, так и оптимального расходования ресурсов семьи, необходимо сначала рассчитать его возможные теплопотери.

Расчет теплопотерь — это способ, определить примерное количество теплопотерь, которое теряет дом через ограждающий контур за конкретное время, в самый холодный период пятидневки. Единица измерения теплопотерь — Ватты.

Полученный результат приблизительный, и требует экспериментальной проверки, так как не реально учесть все моменты, которые влияют на тепловые потери: неправильная конструкция перегородок, разница между температурой внутри и снаружи, действие осадков, солнечной радиации и ветра. Зная данные показатели, можно выбирать модель системы отопления нужной мощности для любого дома.

Калькулятор онлайн

Логика расчета

Процентное соотношение теплопотерь дома через элементы его конструкции, указанное на картинке, весьма приблизительно, поскольку сильно зависит от их устройства и используемых материалов. Потери тепла на инфильтрацию происходят в результате утечки воздуха через щели, некачественное уплотнение дверей и окон, принудительной и естественной вентиляции помещений. Уносимое с воздухом тепло приходится компенсировать более интенсивной работой системы отопления.

Расчет теплопотерь в данной программе выполняется отдельно для каждой стены, пола и потолка с учетом общих для всех элементов помещения условий. Это сделано исходя из следующих предположений:

  • стены могут как непосредственно соприкасаться с атмосферным воздухом, так и выходить в нетапливаемое или плохо отапливаемые помещения;
  • исходя из этого толщина стен и используемый для них материал могут отличаться;
  • конструкция окон также может быть неодинакова.

Для расчета теплопотерь помещения в общем случае необходима площадь рассматриваемых элементов, характеристики теплопроводности или сопротивления теплопередаче используемых материалов и их толщина, а также разница между температурой воздуха внутри помещения (20-22 градуса) и температурой воздуха снаружи.

Температура атмосферного воздуха должна приниматься по самому холодному периоду отопительного сезона и указывается в общих условиях для расчета; если для какой-то стены она другая, введите ее в поле “температура воздуха снаружи помещения”. Для потолка температура, отличная от атмосферной, может быть введена в поле “температура над”, а для пола – “температура снизу”(вводится обязательно). Температура над потолком зависит от наличия или отсутствия утепления чердачного помещения; под полом – от наличия или отсутствия подвала и его типа (чаще всего принимается 0-7+ градусов).

Наружные двери могут выходить прямо на улицу или в неотапливаемое помещение; последнее обстоятельство учитывается в программе умножением рассчитанных теплопотерь через дверь на коэффициент 0.7.

Расчетные потери тепла на инфильтрацию воздуха можно регулировать варьируя значения, вводимые в поле “доля объема воздуха в помещении, подлежащая ежечасному обмену”; дело в том, что требуемый СНИПом ежечасный обмен всего объема воздуха, находящегося в доме, на практике считается завышенным и приводящим к большим затратам на отопление.

Коэффициенты теплопроводности используемых в строительстве материалов берутся из соответствующих таблиц или по данным изготовителей. Это касается и сопротивления теплопередачи стеклопакетов и им подобных конструкций. Что касается стеклопакетов, то при их выборе следует обращать внимание на обозначение.

Например, в обозначении стеклопакета 4-10ap-4: 4 -толщина стекла; 10-расстояние между стеклами; ap – указывает, что это пространство заполнено инертным газом аргоном, что повышает его сопротивление теплопередаче.

В обозначении 4-14-4-14-4и “и” указывает,что стекла имеют мягкое низко эмиссионное покрытие; к-стекло имеет более твердое покрытие, защищено от мелких повреждений, его покрытие низко эмиссионное; pi – на стекло нанесена энергосберегающая пленка и др.

Приведенная в правой части рисунка схема относится к случаю, когда под домом нет подвала (“пол на грунте”) для упрощения решения сложной задачи определения теплопотерь через пол в грунт применяется методика разбиения площади ограждающих конструкций на 4 зоны.

Каждая из четырех зон имеет свое фиксированное сопротивление теплопередаче в м2·°с/вт:r1=2,1 r2=4,3 r3=8,6 r4=14,2. Зона 1 представляет собой полосу (при отсутствии заглубления грунта под строением) шириной 2 метра, отмеренную от внутренней поверхности наружных стен вдоль всего периметра; зоны 2 и 3 имеют также ширину 2 метра и располагаются за зоной 1 ближе к центру здания; зона 4 занимает всю оставшуюся центральную площадь.

В действительности же зоны 3 и 4 при небольших размерах дома могут отсутствовать. В заключение следует указать, что в программе используются следующие общепринятые коэффициенты:

  • 23 – коэфф. теплоотдачи от стен к наружному воздуху
  • 8.7 – коэфф. теплоотдачи от внутреннего воздуха к стенам
  • 6 – коэфф. теплоотдачи от внутреннего воздуха к полу
  • 12 – коэфф. теплоотдачи от потолка к наружному воздуху если неотапливаемый чердак,
  • 1.18 – поправочный коэфф. при расчете теплопотерь пола не на грунте (по снип).

А также доступные в калькуляторе коэфф. теплоотдачи от пола к наружному воздуху/грунту для различных видов подвалов. Необходимо также отметить,что по правилам обмера зданий для расчета теплопотерь длина стен определяется по его наружному периметру, а их высота – от поверхности чистового пола до верхней плоскости потолочного перекрытия. Эту величину следует указывать в поле “высота помещений hp”.

Общие замечания по порядку расчета

  • Сначала рассчитываются теплопотери через двери, стены и окна, все сразу, то есть после ввода всех данных по ним, или по отдельности – после ввода параметров, например по одной из стен или двери; затем рассчитываются таким же образом теплопотери через потолок, пол и потери на инфильтрацию.
  • Каждый элемент может быть пересчитанный повторно после корректировки его параметров; при этом следует учесть, что если вы изменяете количество слоев материалов, сами материалы, наличие или отсутствие окон, перед всеми этими действиями следует нажать кнопку “сброс входных данных”.
  • Расчет теплопотерь через пол, потолок и инфильтрацию возможен только после расчета потерь через стены.
  • “Температура воздуха снаружи” (для стен) и “температура над” (для потолка) вводятся в случае, если они отличаются от температуры, указанной в общих условиях для расчета.
  • Перед расчетом теплопотерь через стены из их площади вычитается площадь окон и двери.

Потери тепла через наружную оболочку

Значительно повышается экономия тепловой энергии при качественном утеплении контура дома и крыши. Необходимость в энергосберегающем ремонте возникает, когда в течение года тратится 100 кВт электрической энергии или 10 кубов природного газа, из расчёта на 1 кв. метр отапливаемой площади, с учётом перегородок.

Энергосберегающее здание — дом, имеющий сплошную теплоизоляцию по всему каркасу нагретой поверхности. В качестве теплоизолирующего материала отлично подходит пеностекло, фанера, пенопласт, гипсокартон. Металл (сталь), также является отличным проводником тепловой энергии. Приобретая стройматериалы, обязательно нужно обращать внимание на коэффициент теплопроводности, который указан в паспорте.

Варианты выхода нагретого воздуха:

  • Крыша — толстый слой теплоизоляционного кровельного материала значительно уменьшит теплопотери.
    К сведению: Если строение деревянное, то укладка теплозащиты на крыше затруднительна, так как происходит набухание древесины, и она может повредиться от влажности.
  • Стены — добиться снижения теплопотерь можно также используя специальное наружное покрытие. При утеплении изнутри, особенно если повышенная влажность, будет образовываться конденсат за изоляцией.
  • Пол — в данном случае, практичнее делать утепление изнутри.
  • Фундамент — его контакт с холодным грунтом значительно увеличивает теплопотерю на первом этаже.
  • Термические мосты — наружные теплопроводники, не редко через них уходит большая часть нагретого воздуха. К ним относятся: бетонное половое покрытие, которое продолжается на балконе, дверные проёмы и окна, особенно классические, двойные. Есть также мосты, относящие к временным, когда перегородки крепятся на металлические элементы.

Современные окна — это стеклопакеты однокамерные и двухкамерные, имеющие специальную отражающую поверхность, что понижает потери излучения. Многослойное остекление более эффективно сохраняет тепло, чем обычное двойное окно.

Тепловые потери на вентиляцию

Обычно, у дома есть воздушные утечки — это оконные и дверные проёмы, и крыша, что создаёт воздухообмен. Но в зимнее время, этот вариант приводит к значительному выходу тёплого воздуха, поэтому с помощью новых технологий были разработаны конструкции уменьшающие утечку нагретых воздушных масс наружу.

Современные дома нуждаются в постоянном вентилировании, так как они имеют высокую воздухонепроницаемость. Для уменьшения теплопотерь связанных с вентиляцией, которые составляют от 10 до 40%, используются новейшие модели вентиляционных систем. Калькулятор теплопотерь дома делается по каждой комнате отдельно, Далее, определяется тепловой расход на вентиляцию — его объём и сколько раз происходила его смена в здание.

Рассчитывая теплотехнические вентиляционные потери, при помощи онлайн калькулятора, нужно учитывать предназначение дома. Для ванной комнаты и кухни требуется повышенный уровень вентиляции.

Минимальное утепление наружных стен

Для проведения онлайн теплотехнического расчёта для внешних стен существует несколько сложных методик, с учётом конвекционного обмена, излучения и т. д., но эти данные часто бывают излишними и не влияющими на итог.

Однако, есть более простой теплотехнический онлайн калькулятор для расчёта теплопотерь дома. Для большей точности, к данному показателю допустимо добавить 1 — 5%.

Важно! Применяя теплотехнический калькулятор, при расчёте потерь тепла дома, следует учитывать время пребывания человека в каждой комнате, чем оно меньше, тем за основу берутся меньшие температурные показания.

Есть два способа рассчитать расход тепла в доме:

  • Метод усреднённых величин — получается приблизительный результат. Расчёт делается по специальной таблице, которая составлена для разных областей с учётом особенностей их климата и средних характеристик здания.
  • Теплотехнический онлайн расчёт потерь тепла дома по периметру здания — площади всех внешних перегородок суммируются, и отнимается размер окон и дверей. Отдельно учитывается площадь крыши и пола, стройматериала и штукатурки. В дальнейшем калькулятор, для определения теплопотерь дома выглядит так: Q = S x ΔT/R, где S – размер полученной площади; ΔT – сведения о температурной разнице, внутри и снаружи; R – показатель сопротивления передачи тепла. R = n/λ;, где n – показатель толщины стен; λ – уровень удельной теплопроводности (Вт/м °C). Данное значение следует брать из таблицы, для необходимого стройматериала.

Материал

Коэффициент теплопроводимости

Толщина стен в мм

Пенополистирол

0,042

124

Минеральная вата

0,046

135

Дерево, брус или бревно (сосна, ель, дуб)

0,18

530

Керамические блоки уложенные на теплоизоляционный клей

 0,17

575

Керамический пустотный кирпич плотностью 1000 кг/м. кв.(Гост 530) уложенный на цементно-песчаный раствор

0,52

1530

Силикатный кирпич на цементно-песчаном растворе

0,87

2560

Железобетон

2,04

602

Полученные результаты, отдельно рассчитанные для перегородок, полового покрытия и крыши, суммируются, прибавляются вентиляционные потери, и данные об утечке тепла через фундамент. В калькулятор теплотехнического расчёта для фундамента заносится меньшая температурная разница.

Данный метод поможет выбрать мощность котла, но не даёт возможность рассчитать необходимое количество радиаторов для каждой комнаты. Приблизительное минимальное качество утеплителя для стен снаружи в мм. выглядит так.

МАТЕРИАЛ Высокое Среднее Низкое
Слой из дерева
плюс пенополистирол или слой каменной ваты
300:100 300:50
 
 
Дерево     200
Газо и
пенобетонный материал
500 400 200
Газоблок и
пенобетонный пласт плюс полистирол или каменная вата
300:100 300:50  
Газовый и
пенобетонный блок плюс кирпичная кладка
    100:120
Слой
керамзитобетона плюс полистирол или пласт каменной ваты
400:100 200:100  
Слой
керамзитобетона
    300
Кирпичная
кладка и полистирол или каменная вата
250:200 250:100  
Силикатный кирпич     250

Точка росы

Под точкой росы подразумевается температура воздуха, до которой он должен охладится, чтобы начать насыщаться и преобразовываться в росу. На данный показатель влияет давление воздуха.

Необходимо стараться избегать образования точки росы. Если это невозможно, следует сместить её к наружным пластам, кроме того требуется хорошая вентиляция этих слоёв.

Решение проблемы точки росы

Основная причина образования точки росы — это высокий уровень пустотелов во внутренних пластах, что приводит к повышению давления водяных паров в холодных слоях конструкции. Решить проблему можно путём добавления менее паронепроницаемого материала внутрь конструкции, или сделать вентиляционный зазора с наружной стороны.

Это позволит сдерживать водяные поры и не даст проходить им сквозь стены. Однако, если переусердствовать, то накопившиеся пары понизят качество воздуха внутри дома. Если здание эксплуатируется в суровых условиях (-20 и выше градусов), то следует сделать принудительное поступление прогретого воздуха в дом, используя теплообменники или нагреватели. В этом случае применение герметичных строительных пароизоляционных материалов не приведёт к ухудшению микроклимата в помещение. Использование онлайн расчёта облегчит процесс определения размера теплопотерь.

Онлайн калькулятор расчёта теплопотерь даёт возможность узнать коэффициент теплопроводимости стен дома или отдельного помещения, и правильно выбрать материал для простой или многослойной теплоизоляции. Кроме того, точность результата важна для при выборе бойлера, для выделения эффективного тепла без перегрева дома.

Калькулятор утеплителя, онлайн расчет количества утеплителя для стен

Для определения нужного количества утеплителя для строящегося дома предлагаем воспользоваться калькулятором. С его помощью можно рассчитать объем утеплителя, применение которого позволит при минимальных затратах сохранять максимальное количество тепла в доме. Для того, чтобы использовать калькулятор утепления стен, выполнить онлайн расчет и определить требуемую толщину и объем утеплителя, который нужно купить, необходимо ввести следующие данные:

  • по каждой из стен указать ширину, высоту. Квадратуру калькулятор подсчитывает автоматически;
  • если предполагается строительство дома с фронтоном, то этот факт также должен быть отражен в соответствующей графе калькулятора;
  • для более точного расчета необходимо указать размеры оконных и дверных проемов, а также их количество;
  • нужно выбрать, какой тип утеплителя предпочтительнее – минеральная или базальтовая вата. После ввода контактных данных, вам будет предложено выбрать из брендов Кнауф и Роквул, в зависимости от типа ваты, которую вы выбрали.

 

Решающее влияние на изменение объема утеплителя оказывают два фактора: материал, из которого предполагается строительство стен – будет ли это каркасный дом или кирпичный, а также тип утеплителя. Предлагаем ознакомиться с характеристиками некоторых, наиболее популярных, материалов, используемых для утепления стен дома.

 

Минеральная вата Кнауф

 

Минераловатный утеплитель Knauf изготавливается из расплавленных силикатных материалов, Это экологически чистый эластичный материал без запаха с коэффициентом теплопроводности от 0,037 до 0,4 Вт/м*К, обладающий отличными звукоизоляционными качествами и следующими свойствами:

  • огнестойкостью;
  • влагостойкостью;
  • устойчивостью к биологическому и химическому воздействию.

 

Базальтовая вата Роквул

 

Каменная вата RockWool является экологически чистым материалом с пористой структурой. Поры заполнены воздухом, поэтому этот тип утеплителя характеризуется минимальным значением коэффициента теплопроводности – 0,037 Вт/м*К. Для сравнения: слой утеплителя Роквул толщиной 100 мм способен задерживать столько же тепла во внутренних помещениях дома, как и стена из кирпича толщиной 1960 мм.

Калькулятор толщины теплоизоляции. Расчет утелителя онлайн

Калькулятор толщины теплоизоляции. Расчет утелителя онлайн Перейти к содержанию
  • Калькулятор толщины утеплителя для стен, потолка, пола С помощью данного калькулятора вы сможете рассчитать толщину утеплителя для стен дома и других ограждений в соответствии с регионом вашего проживания, материала и толщины стен, используемой пароизоляции, материала для подшивки и других важных параметров при утеплении. Подбирая разные материалы, можно выбрать вариант для себя максимально теплый и дешевый.
  • Теплотехнический калькулятор для расчета точки росы С помощью данного калькулятора вы сможете рассчитать оптимальную толщину утеплителя для дома и жилых помещений в соответствии с регионом проживания, материала и толщины стен. Вы сможете рассчитать толщину различных утеплительных материалов. И увидеть наглядно на графике место выпадения конденсата в стене. Удобный калькулятор теплопроводности стены онлайн для расчета толщины утепления.
  • Калькулятор KNAUF Расчет необходимой толщины теплоизоляции Рассчитайте необходимую толщину теплоизоляционного материала в основных городах РФ в различных конструкциях на теплотехническом калькуляторе KNAUF, созданном профессионалами из KNAUF Insulation. Все расчеты производятся по требованию СНиП 23-02-2003 «Тепловая защита зданий», для всех типов зданий. Бесплатный онлайн сервис расчета теплоизоляции KNAUF, удобный и понятный интерфейс.
  • Калькулятор Rockwool расчёта толщины теплоизоляции стен  Калькулятор разработан специалистами Rockwool для помощи в расчёте необходимой толщины теплоизоляции и оценке экономической эффективности её установки. Произвести теплотехнический расчет, подобрать подходящую марку теплоизоляции и рассчитать необходимое количество пачек очень просто.

пошаговое руководство с примерами и формулами


При эксплуатации здания нежелателен как перегрев, так и промерзание. Определить золотую середину позволит теплотехнический расчет, который не менее важен, чем вычисление экономичности, прочности, стойкости к огню, долговечности.

Исходя из теплотехнических норм, климатических характеристик, паро – и влагопроницаемости осуществляется выбор материалов для сооружения ограждающих конструкций. Как выполнить этот расчет, рассмотрим в статье.

Содержание статьи:

Цель теплотехнического расчета

От теплотехнических особенностей капитальных ограждений здания зависит многое. Это и влажность конструктивных элементов, и температурные показатели, которые влияют на наличие или отсутствие конденсата на межкомнатных перегородках и  перекрытиях.

Расчет покажет, будут ли поддерживаться стабильные температурные и влажностные характеристики при плюсовой и минусовой температуре. В перечень этих характеристик входит и такой показатель, как количество тепла, теряющегося ограждающими конструкциями строения в холодный период.

Нельзя начинать проектирование, не имея всех этих данных. Опираясь на них, выбирают толщину стен и перекрытий, последовательность слоев.

По регламенту ГОСТ 30494-96 температурные значения внутри помещений. В среднем она равна 21⁰. При этом относительная влажность обязана пребывать в комфортных рамках, а это в среднем 37%. Наибольшая скорость перемещения массы воздуха — 0,15 м/с

Теплотехнический расчет ставит перед собой цели определить:

  1. Идентичны ли конструкции заявленным запросам с точки зрения тепловой защиты?
  2. Настолько полно обеспечивается комфортный микроклимат внутри здания?
  3. Обеспечивается ли оптимальная тепловая защита конструкций?

Основной принцип — соблюдение баланса разности температурных показателей атмосферы внутренних конструкций ограждений и помещений. Если его не соблюдать, тепло будут поглощать эти поверхности, а внутри температура останется очень низкой.

На внутреннюю температуру не должны существенно влиять изменения теплового потока. Эту характеристику называют теплоустойчивостью.

Путем выполнения теплового расчета определяют оптимальные пределы (минимальный и максимальный) габаритов стен, перекрытий по толщине. Это является гарантией эксплуатации здания на протяжении длительного периода как без экстремальных промерзаний конструкций, так и перегревов.

Параметры для выполнения расчетов

Чтобы выполнить теплорасчет, нужны исходные параметры.

Зависят они от ряда характеристик:

  1. Назначения постройки и ее типа.
  2. Ориентировки вертикальных ограждающих конструкций относительно направленности к сторонам света.
  3. Географических параметров будущего дома.
  4. Объема здания, его этажности, площади.
  5. Типов и размерных данных дверных, оконных проемов.
  6. Вида отопления и его технических параметров.
  7. Количества постоянных жильцов.
  8. Материала вертикальных и горизонтальных оградительных конструкций.
  9. Перекрытия верхнего этажа.
  10. Оснащения горячим водоснабжением.
  11. Вида вентиляции.

Учитываются при расчете и другие конструктивные особенности строения. Воздухопроницаемость ограждающих конструкций не должна способствовать чрезмерному охлаждению внутри дома и снижать теплозащитные характеристики элементов.

Потери тепла вызывает и переувлажнение стен, а кроме того, это влечет за собой сырость, отрицательно влияющую на долговечность здания.

В процессе расчета, прежде всего, определяют теплотехнические данные стройматериалов, из которых изготавливаются ограждающие элементы строения. Помимо этого, определению подлежит приведенное сопротивление теплопередачи и сообразность его нормативному значению.

Формулы для производства расчета

Утечки тепла, теряемого домом, можно разделить на две основные части: потери через ограждающие конструкции и потери, вызванные функционированием . Кроме того, тепло теряется при сбросе теплой воды в канализационную систему.

Потери через ограждающие конструкции

Для материалов, из которых устроены ограждающие конструкции, нужно найти величину показателя теплопроводности Кт (Вт/м х градус). Они есть в соответствующих справочниках.

Теперь, зная толщину слоев, по формуле: R = S/Кт, высчитывают термическое сопротивление каждой единицы. Если конструкция многослойная, все полученные значения складывают.

Размеры тепловых потерь проще всего определить путем сложения тепловых течений через ограждающие конструкции, которые собственно и образуют это здание

Руководствуясь такой методикой, к учету принимают тот момент, что материалы, составляющие конструкции, имеют неодинаковую структуру. Также учитывается, что поток тепла, проходящий сквозь них, имеет разную специфику.

Для каждой отдельной конструкции теплопотери определяют по формуле:

Q = (A / R) х dT

Здесь:

  • А — площадь в м².
  • R — сопротивление конструкции теплопередаче.
  • dT — разность температур снаружи и изнутри. Определять ее нужно для самого холодного 5- дневного периода.

Выполняя расчет таким образом, можно получить результат только для самого холодного пятидневного периода. Общие теплопотери за весь холодный сезон определяют путем учета параметра dT, учитывая температуру не самую низкую, а среднюю.

В какой степени усваивается тепло, а также теплоотдача зависит от влажности климата в регионе. По этой причине при вычислениях применяют карты влажности

Далее, высчитывают количество энергии, необходимой для компенсации потерь тепла, ушедшего как через ограждающие конструкции, так и через вентиляцию. Оно обозначается символом W.

Для этого есть формула:

W = ((Q + Qв) х 24 х N)/1000

В ней N — длительность отопительного периода в днях.

Недостатки расчета по площади

Расчет, основанный на площадном показателе, не отличается большой точностью. Здесь не принят во внимание такой параметр, как климат, температурные показатели как минимальные, так и максимальные, влажность. Из-за игнорирования многих важных моментов расчет имеет значительные погрешности.

Часто стараясь перекрыть их, в проекте предусматривают «запас».

Если все же для расчета выбран этот способ, нужно учитывать следующие нюансы:

  1. При высоте вертикальных ограждений до трех метров и наличии не более двух проемов на одной поверхности, результат лучше умножить на 100 Вт.
  2. Если в проект заложен балкон, два окна либо лоджия, умножают в среднем на 125 Вт.
  3. Когда помещения промышленные или складские, применяют множитель 150 Вт.
  4. В случае расположения радиаторов вблизи окон, их проектную мощность увеличивают на 25%.

Формула по площади имеет вид:

Q=S х 100 (150) Вт.

Здесь Q — комфортный уровень тепла в здании, S — площадь с отоплением в м². Числа 100 или 150 — удельная величина тепловой энергии, расходуемой для нагрева 1 м².

Потери через вентиляцию дома

Ключевым параметром в этом случае является кратность воздухообмена. При условии, что стены дома паропроницаемые, эта величина равна единице.

Проникновение холодного воздуха в дом осуществляется по приточной вентиляции. Вытяжная вентиляция способствует уходу теплого воздуха. Снижает потери через вентиляцию рекуператор-теплообменник. Он не допускает ухода тепла вместе с выходящим воздухом, а входящие потоки он нагревает

Предусматривается полное обновление воздуха внутри здания за один час. Здания, построенные по стандарту DIN, имеют стены с пароизоляцией, поэтому здесь кратность воздухообмена принимают равной двум.

Есть формула, по которой определяют теплопотери через систему вентиляции:

Qв = (V х Кв : 3600) х Р х С х dT

Здесь символы обозначают следующее:

  1. Qв — теплопотери.
  2. V — объем комнаты в мᶾ.
  3. Р — плотность воздуха. еличина ее принимается равной 1,2047 кг/мᶾ.
  4. Кв — кратность воздухообмена.
  5. С — удельная теплоемкость. Она равна 1005 Дж/кг х С.

По итогам этого расчета можно определить мощность теплогенератора отопительной системы. В случае слишком высокого значения мощности выходом из ситуации может стать . Рассмотрим несколько примеров для домов из разных материалов.

Пример теплотехнического расчета №1

Рассчитаем жилой дом, находящийся в 1 климатическом районе (Россия), подрайон 1В. Все данные взяты из таблицы 1 СНиП 23-01-99. Наиболее холодная температура, наблюдающаяся на протяжении пяти дней обеспеченностью 0,92 — tн = -22⁰С.

В соответствии со СНиП отопительный период (zоп) продолжается 148 суток. Усредненная температура на протяжении отопительного периода при среднесуточных температурных показателях воздуха на улице 8⁰ — tот = -2,3⁰. Температура снаружи в отопительный сезон — tht = -4,4⁰.

Теплопотери дома — важнейший момент на этапе его проектирования. От итогов расчета зависит и выбор стройматериалов, и утеплителя. Нулевых потерь не бывает, но стремиться нужно к тому, чтобы они были максимально целесообразными

Оговорено условие, что в комнатах дома должна быть обеспечена температура 22⁰. Дом имеет два этажа и стены толщиной 0,5 м. Высота его — 7 м, габариты в плане — 10 х 10 м. Материал вертикальных ограждающих конструкций — теплая керамика. Для нее коэффициент теплопроводности — 0,16 Вт/м х С.

В качестве наружного утеплителя, толщиной 5 см, использована минеральная вата. Значение Кт для нее — 0,04 Вт/м х С. Количество оконных проемов в доме — 15 шт. по 2,5 м² каждое.

Теплопотери через стены

Прежде всего, нужно определить термическое сопротивление как керамической стены, так и утеплителя. В первом случае R1 = 0,5 : 0,16 = 3,125 кв. м х С/Вт. Во втором — R2 = 0,05 : 0,04 = 1,25 кв. м х С/Вт. В целом для вертикальной ограждающей конструкции: R = R1 + R2 = 3.125 + 1.25 = 4.375 кв. м х С/Вт.

Так как теплопотери имеют прямо пропорциональную взаимосвязь с площадью ограждающих конструкций, рассчитываем площадь стен:

А = 10 х 4 х 7 – 15 х 2,5 = 242,5 м²

Теперь можно определить потери тепла через стены:

Qс = (242,5 : 4.375) х (22 – (-22)) = 2438,9 Вт.

Теплопотери через горизонтальные ограждающие конструкции рассчитывают аналогично. В итоге все результаты суммируют.

Если есть подвал, то теплопотери через фундамент и пол будут меньшими, поскольку в расчете участвует температура грунта, а не наружного воздуха

Если подвал под полом первого этажа отапливается, пол можно не утеплять. Стены подвала все же лучше обшить утеплителем, чтобы тепло не уходило в грунт.

Определение потерь через вентиляцию

Чтобы упростить расчет, не учитывают толщину стен, а просто определяют объем воздуха внутри:

V = 10х10х7 = 700 мᶾ.

При кратности воздухообмена Кв = 2, потери тепла составят:

Qв = (700 х 2) : 3600) х 1,2047 х 1005 х (22 – (-22)) = 20 776 Вт.

Если Кв = 1:

Qв = (700 х 1) : 3600) х 1,2047 х 1005 х (22 – (-22)) = 10 358 Вт.

Эффективную вентиляцию жилых домов обеспечивают роторные и пластинчатые рекуператоры. КПД у первых выше, он достигает 90%.

Пример теплотехнического расчета №2

Требуется произвести расчет потерь сквозь стену из кирпича толщиной 51 см. Она утеплена 10-сантиметровым слоем минеральной ваты. Снаружи – 18⁰, внутри — 22⁰. Габариты стены — 2,7 м по высоте и 4 м по длине. Единственная наружная стена помещения ориентирована на юг, внешних дверей нет.

Для кирпича коэффициент теплопроводности Кт = 0,58 Вт/мºС, для минеральной ваты — 0,04 Вт/мºС. Термическое сопротивление:

R1 = 0,51 : 0,58 = 0,879 кв. м х С/Вт. R2 = 0,1 : 0,04 = 2,5 кв. м х С/Вт. В целом для вертикальной ограждающей конструкции: R = R1 + R2 = 0.879 + 2,5 = 3.379 кв. м х С/Вт.

Площадь внешней стены А = 2,7 х 4 = 10,8 м²

Потери тепла через стену:

Qс = (10,8 : 3.379) х (22 – (-18)) = 127,9 Вт.

Для расчета потерь через окна применяют ту же формулу, но термическое сопротивление их, как правило, указано в паспорте и рассчитывать его не нужно.

В теплоизоляции дома окна — «слабое звено». Через них уходит довольно большая доля тепла. Уменьшат потери многослойные стеклопакеты, теплоотражающие пленки, двойные рамы, но даже это не поможет избежать теплопотерь полностью

Если в доме окна с размерами 1,5 х 1,5 м ² энергосберегающие, ориентированы на Север, а термическое сопротивление равно 0,87 м2°С/Вт, то потери составят:

Qо = (2,25 : 0,87) х (22 – (-18)) = 103,4 т.

Пример теплотехнического расчета №3

Выполним тепловой расчет деревянного бревенчатого здания с фасадом, возведенным из сосновых бревен слоем толщиной 0,22 м. Коэффициент для этого материала — К=0,15. В этой ситуации теплопотери составят:

R = 0,22 : 0,15 = 1,47 м² х ⁰С/Вт.

Самая низкая температура пятидневки — -18⁰, для комфорта в доме задана температура 21⁰. Разница составит 39⁰. Если исходить из площади 120 м², получится результат:

Qс = 120 х 39 : 1,47 = 3184 Вт.

Для сравнения определим потери кирпичного дома. Коэффициент для силикатного кирпича — 0,72.

R = 0,22 : 0,72 = 0,306 м² х ⁰С/Вт.
Qс = 120 х 39 : 0,306 = 15 294 Вт.

В одинаковых условиях деревянный дом более экономичный. Силикатный кирпич для возведения стен здесь не подходит вовсе.

Деревянное строение имеет высокую теплоемкость. Его ограждающие конструкции долго хранят комфортную температуру. Все же, даже бревенчатый дом нужно утеплять и лучше сделать это и изнутри, и снаружи

Строители и архитекторы рекомендуют обязательно делать для грамотного подбора оборудования и на стадии проектирования дома для выбора подходящей системы утепления.

Пример теплорасчета №4

Дом будет построен в Московской области. Для расчета взята стена, созданная из пеноблоков. Как утеплитель применен . Отделка конструкции — штукатурка с двух сторон. Структура ее — известково-песчаная.

Пенополистирол имеет плотность 24 кг/мᶾ.

Относительные показатели влажности воздуха в комнате — 55% при усредненной температуре 20⁰. Толщина слоев:

  • штукатурка — 0,01 м;
  • пенобетон — 0,2 м;
  • пенополистирол — 0,065 м.

Задача — отыскать нужное сопротивление теплопередаче и фактическое. Необходимое Rтр определяют, подставив значения в выражение:

Rтр=a х ГСОП+b

где ГОСП — это градусо-сутки сезона отопления, а и b — коэффициенты, взятые из таблицы №3 Свода Правил 50.13330.2012. Поскольку здание жилое, a равно 0,00035, b = 1,4.

ГСОП высчитывают по формуле, взятой из того же СП:

ГОСП = (tв – tот) х zот.

В этой формуле tв = 20⁰, tот = -2,2⁰, zот — 205 — отопительный период в сутках. Следовательно:

ГСОП = ( 20 – (-2,2)) х 205 = 4551⁰ С х сут.;

Rтр = 0,00035 х 4551 + 1,4 = 2,99 м2 х С/Вт.

Используя таблицу №2 СП50.13330.2012, определяют коэффициенты теплопроводности для каждого пласта стены:

  • λб1 = 0,81 Вт/м ⁰С;
  • λб2 = 0,26 Вт/м ⁰С;
  • λб3 = 0,041 Вт/м ⁰С;
  • λб4 = 0,81 Вт/м ⁰С.

Полное условное сопротивление теплопередаче Rо, равно сумме сопротивлений всех слоев. Рассчитывают его по формуле:

Эта формула взята из СП 50.13330.2012. Здесь 1/ав – это противодействие тепловосприятию внутренних поверхностей. 1/ан — то же наружных, δ / λ — сопротивление термическое слоя

Подставив значения получают: Rо усл. = 2,54 м2°С/Вт. Rф определяют путем умножения Rо на коэффициент r, равный 0.9:

Rф = 2,54 х 0,9 = 2,3 м2 х °С/Вт.

Результат обязывает изменить конструкцию ограждающего элемента, поскольку фактическое тепловое сопротивление меньше расчетного.

Существует множество компьютерных сервисов, ускоряющих и упрощающих расчеты.

Теплотехнические расчеты напрямую связаны с определением . Что это такое и как найти ее значение узнаете из рекомендуемой нами статьи.

Выводы и полезное видео по теме

Выполнение теплотехнического расчета при помощи онлайн-калькулятора:

Правильный теплотехнический расчет:

Грамотный теплотехнический расчет позволит оценить результативность утепления наружных элементов дома, определить мощность необходимого отопительного оборудования.

Как результат, можно сэкономить при покупке материалов и нагревательных приборов. Лучше заранее знать, справиться ли техника с нагревом и кондиционированием строения, чем покупать все наугад.

Оставляйте, пожалуйста, комментарии, задавайте вопросы, размещайте фото по теме статьи в находящемся ниже блоке. Расскажите о том, как теплотехнический расчет помог вам выбрать обогревательное оборудование нужной мощности или систему утепления. Не исключено, что ваша информация пригодится посетителям сайта.

Уравнение и калькулятор потерь тепла через стену

| Инженеры Edge

Связанные ресурсы: теплопередача

Уравнение и калькулятор потерь тепла через стену

Теплообменная техника
Термодинамика
Инженерная физика

Расчет потерь тепла через стену и калькулятор

ВСЕ калькуляторы требуют членства Premium

Предварительный просмотр

: Калькулятор тепловых потерь через стену

или

Где:

Q = передача устойчивого состояния тепла (Вт)
T 1 = Температура (° C)
T 2 = Температура (° C)
k = теплопроводность (Вт / м · ° C)
ΔT стенка = изменение температуры (° C)
R стенка = термическое сопротивление перехода (° C / Вт)

Пример:

Рассмотрим высоту 3 м, ширину 5 м и 0. Стенка толщиной 3 м с теплопроводностью k = 0,9 Вт / м · ° C. В определенный день температура внутренней и внешней поверхностей стены составляет 16 ° C и 2 ° C соответственно. Скорость потери тепла через стену в этот день.

Две поверхности стены поддерживаются при заданной температуре. Скорость потери тепла через стену подлежит определению.

Допущения

1 Теплопередача через стену стабильна, поскольку температура поверхности остается постоянной на заданных значениях.
2 Теплопередача является одномерной, так как любые значительные градиенты температуры будут существовать в направлении от помещения к улице.
3 Теплопроводность постоянна.

Альтернатива стабильной скорости теплопередачи через стену за счет использования концепции термического сопротивления из

Где:

Замена

© Copyright 2000-2021, ООО «Инжиниринг Эдж» www.engineeringsedge.com
Все права защищены
Отказ от ответственности | Обратная связь | Реклама | Контакты

Дата / Время:

Бесплатный онлайн-калькулятор значений U, R и теплового моста (значение psi)

Значение U (Вт / м2K) — это коэффициент теплопередачи строительного элемента (стены, крыши, пола или окна). Он включает тепловые сопротивления всех слоев (включая воздушные полости) и поверхностные сопротивления на обеих поверхностях элемента.Сопротивления поверхностей учитывают как конвективное, так и длинноволновое излучение между поверхностью элемента и окружающей средой.

Значение U — это тепловой поток Q (W) через всю площадь элемента, деленный на общую площадь элемента и разницу температур между внешней и внутренней средами. Поэтому он используется в расчетах энергопотребления здания (например, SAP, SBEM) для оценки общих потерь тепла через ткань здания.

Значение R (м2K / Вт) — это тепловое сопротивление строительного элемента, обратное значению U (R = 1 / U)

Значение psi или линейный коэффициент теплопередачи — это тепло, передаваемое через стыки элементов, и это дополнительное тепло, которое не может быть учтено с помощью U или значение R

Для строительства энергоэффективных зданий очень важно понимать, прогнозировать и точно рассчитывать тепловой поток через ограждающую конструкцию здания.Тепло, передаваемое через твердые конструкции, оценивается с помощью значений U или R и psi. Два других «пути» теплопередачи через оболочку здания — это солнечное излучение через окна и конвекция, то есть тепло, переносимое преднамеренными потоками воздуха (вентиляция) или непреднамеренными утечками воздуха.

Эти бесплатные онлайн-значения U Калькуляторы значений R и psi используют метод, описанный в EN ISO 6946: 2007 и EN ISO 13370: 2007 (стены, крыши и полы), EN ISO 10077-1: 2006 (окна), EN 673: 2011 (стекло) и BR497. (линейная тепловая проницаемость) и включают:

-Эффект тепловых мостов.

-Верхний и нижний пределы общего термического сопротивления.

-Тепловые дорожки и проценты.

-Исправление креплений и воздушных зазоров.

-Значение U цокольного этажа.

-Значение U центра стеклопакета и значение U всего окна, включая раму и распорку.

-Наружная стена с заполнением пустотами — цокольный этаж (изоляция под плитой), линейная теплопроводность.

Эти калькуляторы значений U, R и psi выполняют расчет значений U и R для стен, крыш, цокольных этажей и окон, а также расчет значений psi для соединения внешней стены с первым этажом.Это бесплатный инструмент, не требующий регистрации или загрузки, вам нужно только установить плагин Silverlight в вашем браузере, бесплатно доступный от Microsoft. Щелкните здесь, чтобы получить доступ к калькуляторам.

Conductive Heat Transfer

Проводимость как теплопередача имеет место при наличии температурного градиента в твердой или неподвижной текучей среде.

При столкновении соседних молекул энергия проводимости передается от более энергичных молекул к менее энергичным.Тепло течет в направлении понижения температуры, поскольку более высокие температуры связаны с более высокой молекулярной энергией.

Кондуктивная теплопередача может быть выражена с помощью «закона Фурье »

q = (к / с) A dT

= UA dT (1)

где

q = теплопередача (Вт, Дж / с, БТЕ / ч)

k = Теплопроводность материала (Вт / м · К или Вт / м o C, БТЕ / (час o F ft 2 / фут)

s = толщина материала (м, фут)

A = площадь теплопередачи (м 2 , фут 2 )

U = к / с

= Коэффициент теплопередачи (Вт / (м 2 K), БТЕ / (фут 2 ч o F)

dT = t 1 — t 2

= температурный градиент — разница — по материалу ( o C, o F) 90 024

Пример — кондуктивный теплообмен

Плоская стена изготовлена ​​из твердого железа с теплопроводностью 70 Вт / м o C. Толщина стены 50 мм , а длина и ширина поверхности 1 м на 1 м. Температура составляет 150 o C с одной стороны поверхности и 80 o C с другой.

Можно рассчитать кондуктивную теплопередачу через стену

q = [(70 Вт / м o C) / (0,05 м) ] [(1 м) (1 м)] [ (150 o C) — (80 o C)]

= 98000 (Вт)

= 98 (кВт)

Калькулятор теплопроводности.

Этот калькулятор можно использовать для расчета теплопроводности теплопередачи через стену. Калькулятор является универсальным и может использоваться как для метрических, так и для британских единиц измерения, если они используются последовательно.

k — теплопроводность (Вт / (мК), Btu / (час o F ft 2 / ft))

A — площадь ) 2 , фут 2 )

t 1 — температура 1 ( o C, o F)

t 2 — температура 2 ( o C, o F)

s — толщина материала (м, фут)

Кондуктивная теплопередача через плоскую поверхность или стену со слоями из серии

Тепло, проводимое через стену со слоями в тепловой контакт можно рассчитать как

q = dT A / ((s 1 / k 1 ) + (s 2 / k 2 ) +… + (s n / k n )) (2)

где

dT = t 1 — t 2

= разница температур между внутренней и внешней стеной ( o C, o F)

Обратите внимание, что тепловое сопротивление из-за поверхностной конвекции и излучения не входит в это уравнение .Конвекция и излучение в целом имеют большое влияние на общие коэффициенты теплопередачи.

Пример — кондуктивный теплообмен через стенку печи

Стенка печи 1 м 2 состоит из внутреннего слоя нержавеющей стали толщиной 1,2 см и , покрытого наружным изоляционным слоем изоляционной плиты 5 см . Температура внутренней поверхности стали составляет 800 K , а температура внешней поверхности изоляционной плиты составляет 350 K .Теплопроводность нержавеющей стали составляет 19 Вт / (м · К) , а теплопроводность изоляционной плиты составляет 0,7 Вт / (м · К) .

Кондуктивный перенос тепла через многослойную стену можно рассчитать как

q = [(800 K) — (350 K)] (1 м 2 ) / ([(0,012 м) / (19 Вт / (м · К) )] + [(0,05 м) / (0,7 Вт / (м · К))] )

= 6245 (Ш)

= 6.25 кВт

Единицы теплопроводности

  • БТЕ / (ч-фут 2 o фут / фут)
  • БТЕ / (ч фут 2 o фут / дюйм) 7 52 БТЕ / (с фут 2 o фут / фут)
  • британских тепловых единицы дюйм) / (фут² ч ° F)
  • МВт / (м 2 К / м)
  • кВт / (м 2 К / м)
  • Вт / (м 2 К / м)
  • Вт / (м 2 К / см)
  • Вт / ( см 2 o C / см)
  • Вт / (дюйм 2 o F / дюйм)
  • кДж / (hm 2 К / м)
  • J / (см 2 o C / м)
  • ккал / (hm 2 o C / м)
  • кал / (с см 2 o C / см)
  • 1 Вт / (м · K) = 1 Вт / (м o C) = 0.85984 ккал / (hm o C) = 0,5779 Btu / (ft h o F) = 0,048 Btu / (дюйм h o F) = 6,935 (BTu дюймов) / (фут² час ° F)

Калькулятор изоляции

Этот калькулятор изоляции отвечает на вопрос: «Каково значение R для данной стены и сколько изоляции мне нужно?» Вы можете поэкспериментировать с этим калькулятором, чтобы узнать, как рассчитать R-значение (общее R-значение) любого изоляционного материала стен, утеплителя чердака или барьера.Выберите материалы, которые вы уже используете, или материалы, которые вы хотите использовать, и введите их толщину, чтобы найти общую R-ценность вашего барьера. Это также идеальное время, чтобы проверить наш калькулятор тепловых потерь, в котором обсуждается «U-Value», которое вы, возможно, также захотите узнать. Но чтобы узнать больше об изоляции и R-значении, продолжайте читать эту статью.

Что такое изоляция и какая изоляция вам нужна?

Жизнь в местах с сильной жарой летом заставляет людей использовать кондиционеры для поддержания комфорта в своих домах.Стены, крыша, пол и даже окна и входные двери наших домов действуют как барьеры, защищающие нас от внешних температур. Материалы, используемые для этих барьеров, влияют на то, насколько хорошо наши дома сохраняют сильную жару снаружи. Тепло или тепловая энергия протекает через материалы посредством проводимости, конвекции и излучения. Мы называем материалы, которые хорошо сопротивляются тепловому потоку, изоляционными материалами или просто изоляционными материалами .

Также настоятельно рекомендуется использовать изоляцию для домов, которые зимой испытывают отрицательные температуры.Обогреватели были бы намного эффективнее с изолированными стенами и крышей, так как тепло, производимое обогревателями, будет надлежащим образом храниться внутри. Также важно держать плотно закрытым домом , чтобы избежать утечек тепла. Удивительно, но слой снега может действовать как изоляция на нашей кровле. Однако без надлежащей кровли и изоляции чердака внутри крыши и стен может скапливаться влага, что может привести к повреждениям в будущем.

Что такое R-значение?

Любой материал, который хорошо сопротивляется тепловому потоку, можно использовать в качестве изоляции (ну, можно использовать даже те, которые имеют плохие резисторы, но зачем вам?). R-Value — это числовое значение, присвоенное материалу, которое представляет его сопротивление тепловому потоку при заданной толщине. Мы также можем определить общую R-ценность слоев материала, из которых состоят наши дома. Чем выше R-Value барьера, тем выше его термическое сопротивление. Толщина материала также влияет на его общую R-ценность. Чем толще материал, тем лучше его термическое сопротивление, если у него хорошее значение R-Value.

С другой стороны, получение обратного значения R-Value дает нам еще один фактор, который описывает тепловой поток через материал.Мы называем этот коэффициент U-Value или U-коэффициент. U-значение, с другой стороны, представляет способность материала проводить тепло. Это означает, что более низкие значения U предпочтительнее, поскольку они ограничивают поток тепла через барьеры дома.

Как рассчитать R-Value барьера

Вычислить полное R-значение барьера так же просто, как сложить R-значение каждого материала в заданном поперечном сечении. Так как R-значения материала имеют единицы измерения в ° F · ft² · ч / BTU на единицу толщины дюйма, мы сначала должны умножить R-значение материала на его толщину, чтобы получить его общее R-значение.С учетом сказанного, мы можем рассчитать общий или объемный R-Value барьера (с несколькими слоями материалов), используя следующее уравнение:

Общая R-ценность = R₁t₁ + R₂t₂ + R₃t₃ + R₄t₄ + R₅t₅ + ... + Rₙtₙ

Где Rₙ — это R-Value материала в ° F · ft² · ч / BTU / дюйм, а tₙ — это соответствующая толщина в дюймах . Мы также можем выразить R-значения в метрических единицах или единицах СИ как м² · К / Вт . Мы можем преобразовать значения R в RSI (значение R в единицах СИ), разделив значение R на производную константу 5.6785917 .

Чтобы лучше понять, как рассчитать общее значение R-Value, давайте рассмотрим образец стены с теми же слоями, что и на изображении ниже:

Этот образец стены включает в себя типичный гипсокартон с изоляцией из стекловолокна толщиной 3 дюйма (значение R: 3,40) между двумя листами цементной плиты 3/4 дюйма (значение R: 0,05). Этот гипсокартон устанавливается с воздушным зазором. (R-значение: 1,43) от 1 дюйма до 3-дюймовой бетонной стены (R-значение: 0,08). Стена также поставляется с внешней 2-дюймовой кирпичной облицовкой (R-значение: 0.20), с дюймовым слоем гравия (R-Value: 0,60) между ними. Используя приведенную ниже таблицу, мы можем увидеть, каковы R-значения для других материалов, обычно используемых в строительстве:

Материал R-Value
на дюйм
толщина
Материал R-Value
на дюйм
толщина
Акустическая потолочная плитка 2.90 Изоциануратная пена 7,00
Воздушное пространство 1,43 Ламинированная древесноволокнистая плита 2,38
Бетон с воздухововлекающими добавками 3,90 Мацерированная бумага / целлюлоза 3.57
Плита асбестоцементная 0,25 Мрамор 0,05
Кирпич (90 PCF) 0,20 Мрамор 0,09
Ковровое покрытие и волокнистая подушка 2.10 Минеральная / минеральная вата (сыпучий наполнитель) 3,20
Кедровые бревна 1,33 Минеральная / минеральная вата 3,30
Целлюлоза (плотная упаковка) 3,20 ДСП (низкой плотности) 1.41
Целлюлоза (насыпная) 3,50 ДСП (средней плотности) 1,06
Цементная плита 0,05 ДСП 1,10
Цементный раствор 0.20 Фанера 1,25
Плитка керамическая 0,08 Пенополиизоцианурат PIR с фольгой 7,20
CMU (полый) 1,00 Аэрозольная пена из полиизоцианурата PIR 6.50
Кирпич обыкновенный (120 ПКФ) 0,11 Пенополиуритан ПУ (высокая плотность) 6,50
Пробковая доска 3,45 Пенополиуритан (низкая плотность) 3,70
Вспученный перлит (сыпучий наполнитель) 2.63 Литой бетон 0,08
Пенополистирол EPS 4,00 Песок и гравий 0,60
Пенополистирол экструдированный XPS 5,00 Опилки или стружка 2.22
Стекловолокно (плотная упаковка) 4,00 Пиломатериалы хвойных пород (пихта, сосна) 1,25
Стекловолокно (насыпная) 0,7 PCF 2,20 Штукатурка 0,20
Стекловолокно (насыпной) 2.0 PCF 4,00 Пена тройного сополимера мочевины 4,48
Стекловолокно (легкое) 4,00 Вермикулит (насыпь) 2,20
Стекловолокно (стандарт) 3,40 Дерево 1.25
Гранит 0,05 Ватина из древесного волокна 4,00
Гипсокартон 0,90 Деревянная черепица 1,00
Твердая древесина (клен, дуб) 0.91

Учитывая значения R и толщину материалов в нашем примере, теперь мы можем ввести их в наш калькулятор изоляции, который решает общее уравнение R-Value следующим образом:

Общее значение R = (0,05) * (0,75 дюйма) + (3,40) * (3 дюйма) + (0,05) * (0,75 дюйма) + (1,43) * (1 дюйм) + (0,08) * (3 дюйма) ) + (0,60) * (1 дюйм) + (0,20) * (2 дюйма)

Общая R-стоимость = 12,948

Тогда мы можем сказать, что общая R-ценность данных 11.5-дюймовая стена с описанной выше изоляцией стены составляет 12,948 ° F · фут² · ч / БТЕ или значение R R-12,9 .

Значение R

Рекомендуемые значения R для каждого типа барьеров в наших домах зависят от того, где мы живем. Также рекомендуется проверить свои местные строительные нормы и правила на предмет их рекомендуемых значений R для изоляции стен, чердака и даже изоляции пола, чтобы узнать, сколько изоляции вам нужно. Вы также можете увидеть рекомендуемые значения сопротивления изоляции, напечатанные на упаковке изоляционных материалов.Ваш местный поставщик также будет рад сообщить вам рекомендуемое значение R-Value для необходимого вам приложения. С помощью нашего калькулятора изоляции вы сможете определить толщину изоляции, необходимую для вашего дома.

Если вы найдете наш калькулятор изоляции полезным для определения R-значений изоляции стен и чердака, возможно, вы также захотите попробовать наш калькулятор размера комнаты для кондиционера, который поможет вам определить подходящий размер кондиционера для вашей комнаты.Однако, если вы планируете построить энергоэффективный дом, мы настоятельно рекомендуем наш калькулятор экономии пассивного дома.

Калькуляторы и инструменты

Инструменты

Сияющий барьер

Излучающие барьеры работают за счет уменьшения теплопередачи за счет теплового излучения через воздушное пространство между крышей и чердаком, где обычно размещается обычная изоляция.

Калькулятор экономии на воздушной герметичности

Калькулятор экономии на герметичности помогает домовладельцам и строителям вычислить потери энергии при утечке воздуха через ограждающую конструкцию здания.

Калькулятор экономии на кровле

Калькулятор экономии на кровле был разработан как общепринятый в отрасли калькулятор экономии на кровле для коммерческих и жилых зданий с использованием моделирования энергопотребления всего здания.

Справочник по проектированию фундаментов

Этот справочник предоставляет информацию, которая позволяет проектировщикам, строителям и домовладельцам понять проблемы и решения при проектировании фундаментов.

WUFI

Oak Ridge National Laboratory (ORNL) / Fraunhofer IBP — это управляемая с помощью меню программа для ПК, которая позволяет реалистично рассчитывать переходный связанный одномерный перенос тепла и влаги в многослойных компонентах здания, подверженных воздействию естественной погоды.

Информационный бюллетень по изоляции

На отопление и охлаждение приходится 50-70% энергии, потребляемой в среднем американском доме. Неадекватная изоляция и утечка воздуха являются основными причинами потерь энергии в большинстве домов.

Автонастройка

Autotune автоматически калибрует модели в соответствии с данными об энергопотреблении здания.

Калькулятор крутых уклонов DOE

Калькулятор крутых уклонов DOE рассчитывает экономию на охлаждении и обогреве крыш жилых домов с не-черными поверхностями.

Конструктивная модель теплового насоса (версия Mark 7)

Поддерживает исследования прототипов, разработку продуктов и ограниченную оценку альтернативных хладагентов для оборудования и приборов, основанных на сжатии пара из источника воздуха. Версия Mark 7 представляет собой стандартную конфигурацию теплового насоса с фиксированной скоростью и одним внутренним блоком.

Конструктивная модель теплового насоса (версия Flex)

Поддерживает исследования прототипов, разработку продуктов и оценку альтернативных хладагентов для парокомпрессионного оборудования и приборов.Гибкая версия может работать с рядом агрегатов с несколькими скоростями для систем кондиционирования, нагрева воды и охлаждения.

Тепловые характеристики и рейтинг стенок

В этом документе предлагается рассмотреть в качестве принятой на национальном уровне методологии консенсуса процедуру оценки R-значения непрозрачной стены (R-value всей стены), независимо от типа системы и строительных материалов.

HTflux — Программное обеспечение для моделирования

В следующем тексте я постараюсь предоставить наиболее важную информацию о расчете тепловой массы для строительных приложений.Вторая часть — это краткое руководство по пониманию и использованию моего бесплатного Excel-калькулятора (ссылка внизу этой страницы).

Резюме для пользователей, не желающих читать весь текст…

Короче говоря, наиболее важным применением этого инструмента будет оптимизация (= максимизация) тепловой массы на внутренних поверхностях зданий. Это поможет снизить суточные перепады температуры внутри здания. Увеличивая внутреннюю массу, ваша стена, пол или потолок должны поглощать большую часть солнечного излучения в течение дня и выделять накопленное тепло через естественную вентиляцию в течение ночи.

Для этого вам нужно будет максимизировать результирующую цифру « внутренняя поверхностная теплоемкость » в инструменте. Как вы увидите, это свойство зависит в основном от внутреннего поверхностного слоя — до нескольких сантиметров или даже миллиметров ниже поверхности. Поэтому для достижения высокой теплоемкости вам необходимо выбрать материал, обладающий высокой теплопроводностью и плотностью этого самого верхнего внутреннего слоя.

Я считаю другие результаты расчетов (временные сдвиги, периодический коэффициент пропускания …) второстепенными.Однако для полного понимания темы или для специальных приложений я все же рекомендую прочитать весь текст ниже…

Введение

Следующие расчеты основаны на методах расчета, описанных в стандарте ISO 13786. Без явного упоминания этого в стандарте используются хорошо известные методы расчета, которые используются в электротехнике для описания поведения компонентов в цепях переменного тока. Расчеты производятся с использованием матриц комплексных чисел.

Для аналитического решения этих уравнений предполагается, что граничные условия (температуры или тепловые потоки), а также результирующие переменные (температуры и тепловые потоки) имеют синусоидальную форму с периодом 24 часа. Даже если это звучит как серьезное ограничение, на самом деле это подходящее и полезное предположение. Синусоидальная форма является подходящей, поскольку фактические среднесуточные колебания температуры в значительной степени соответствуют синусоидальным волнам или имеют, по крайней мере, доминирующую синусоидальную составляющую (см. Теорему Фурье).Ограничение периодической продолжительностью 24 часа также является разумным, поскольку только в течение этих 24 часов можно действительно ожидать циклических колебаний температуры.

Внутренняя теплопроводность

Результат расчета тепловой проводимости описывает способность поверхности поглощать и отдавать тепло (энергию) при периодическом синусоидальном колебании температуры с периодом 24 часа. Значение описывает амплитуду теплового потока (= максимальное значение), вызванное колебанием температуры в 1 K (° C).Предполагается, что температура на противоположной стороне стены поддерживается постоянной. Из-за линейности основных уравнений вы можете просто умножить значение на любые другие амплитуды температуры, чтобы получить соответствующие тепловые потоки, например если вы хотите оценить максимальный тепловой поток в / из вашей стены, вызванный внутренним перепадом температуры на 6 ° C, а внутренняя теплопроводность вашей стены составляет 5 Вт / (м²K), то максимальный тепловой поток будет составлять 6 K * 5 Вт / (м²K) = 30 Вт / м². Следовательно, «реакцией» этой стены на синусоидальные периодические колебания температуры 6 ° C будет синусоидальный тепловой поток, поглощающий максимум 30 Вт на квадратный метр в течение дня и выделяющий те же 30 Вт / м² ночью.

Способность стены поглощать энергию в течение дня имеет решающее значение для предотвращения перегрева в летнее время или для снижения затрат на охлаждение. Внутреннюю теплопроводность можно использовать для оценки этой способности, однако внутренняя поверхностная теплоемкость , которая почти пропорциональна этому значению, на самом деле больше подходит для этой работы (см. Ниже).

Time-shift — внутренняя теплопроводность

Тепловой поток, вызванный колебаниями температуры, сдвинут во времени, что означает, что он не имеет своих максимумов и минимумов одновременно.Тепловой поток обычно приводит к колебаниям температуры окружающей среды (тогда как фактическая температура поверхности стены будет отставать). Таким образом, если ваше выходное значение для временного сдвига составляет «2:00» (как в приведенном выше примере), максимальный тепловой поток в / из стены произойдет на 2 часа раньше, чем максимум / минимум температуры.
Этот временной сдвиг является лишь «побочным эффектом» тепловой буферизации, и на него невозможно повлиять / спроектировать без изменения теплоемкости стены. Фактически это является следствием отстающей / отстающей температуры поверхности стены, поскольку разница между температурой поверхности и температурой окружающей среды имеет значение для результирующего теплового потока.

Внешняя теплопроводность

В соответствии с внутренней теплопроводностью (см. Выше), тогда внешняя теплопроводность описывает способность аккумулировать тепло при внешних колебаниях температуры. Опять же, предполагается, что температура на противоположной стороне поддерживается постоянной.

Что касается значения этого значения, обратитесь к внешней тепловой мощности ниже.

Time-shift — внешнее тепловое сопротивление

Опять же, соответствующее внутреннему сдвигу во времени, это результирующее значение скажет вам, сколько времени максимумы / минимумы теплового потока будут опережать максимумы / минимумы температуры.

Периодический коэффициент теплопередачи

Выходное значение периодического коэффициента теплопередачи описывает тепловой поток, вызванный колебаниями температуры на противоположной стороне компонента, при условии, что температура окружающей среды на той же стороне стены поддерживается постоянной. Хотя кажется, что периодический коэффициент теплопередачи вместе с его фазовым сдвигом является любимой темой некоторых ученых-строителей и специалистов по маркетингу изоляционных материалов, эффектом периодической теплопередачи можно пренебречь для большинства стандартных строительных приложений.В соответствии с современными стандартами изоляции (низкие значения коэффициента теплопередачи), изменения теплового потока, которые фактически будут вызваны колебаниями температуры на противоположной стороне строительного элемента, будут незначительными. Чтобы проиллюстрировать это, мы можем использовать этот инструмент для расчета влияния на периодический коэффициент теплопередачи легкой изоляции по сравнению с тяжелой изоляцией. Мы можем показать это на примере простой стены (или крыши), состоящей исключительно из 20 см железобетона и 15 см внешней изоляции. Предполагается сильное колебание внешней температуры на +/- 15 ° C (= диапазон 30 ° C).Исходя из этих предположений, получаем следующие результаты:

Легкая изоляция (25 кг / м³): перепады температуры внутренней поверхности: +/- 0,10 ° C, тепловой поток: +/- 0,77 Вт / м², фазовый сдвиг: 7,6 часа

Плотная изоляция (250 кг / м³): перепады температуры внутренней поверхности: +/- 0,04 ° C, тепловой поток: +/- 0,34 Вт / м², фазовый сдвиг: 14,6 часа

Это означает, что эффект очень хорошо виден с относительной точки зрения. Однако с абсолютной точки зрения разница вряд ли значима, поскольку итоговые общие тепловые потоки незначительны по сравнению с другими источниками тепла (например,грамм. незатененные или открытые окна).

Временной сдвиг периодического коэффициента теплопередачи

Значение описывает задержку, которую будет иметь тепловая волна, вызванная колебаниями температуры противоположной стороны стены. Чтобы соответствовать другим значениям временного сдвига, отрицательный знак означает, что тепловой поток отстает от колебаний температуры на другой стороне стены. Часто указывается, что необходимо нацелить сдвиг во времени на 12 часов, поскольку это означает, что максимум тепловых волн будет приходить на другую сторону стены, когда температуры самые низкие (или наоборот).В отношении компонентов здания, соответствующих современным строительным стандартам, это правило можно считать устаревшим, поскольку фактические колебания температуры поверхности, вызванные колебаниями температуры на противоположной стороне компонента здания, обычно находятся в диапазоне десятых или даже нескольких сотых градусов по Цельсию. Поэтому соответствующие тепловые потоки обычно незначительны.

Теплоемкость внутренняя площадная

Значение внутренней теплоемкости описывает способность строительного компонента аккумулировать тепло в течение суточного цикла.Значение указывает количество тепла, которое может быть сохранено на одном квадратном метре в течение одного дня при колебании температуры в 1 градус, поэтому его единица измерения — кДж / м²K. Поскольку лежащие в основе уравнения линейны, можно умножить это значение на любую другую амплитуду температуры, чтобы вычислить соответствующее количество тепла, которое может быть сохранено.

Площадь теплоемкости рассчитывается путем интегрирования тепловых потоков, описываемых теплопроводностью за целый день. В отличие от способа определения единичной теплопроводности, внутренняя поверхностная теплоемкость учитывает колебания температуры с обеих сторон компонента здания.Следовательно, используя комплексные числа, его можно вычислить на основе внутренней проводимости и периодического пропускания. В зависимости от фактического временного фазового сдвига периодического коэффициента пропускания он может либо увеличивать, либо уменьшать пропускную способность по сравнению с ситуацией с постоянными внешними температурами. Однако, как упоминалось выше, для высоких стандартов изоляции влияние периодического пропускания будет незначительным. По этой причине внутренняя поверхностная теплоемкость обычно в значительной степени пропорциональна внутренней теплопроводности.

Очень важно иметь достаточно большую внутреннюю теплоемкость, чтобы избежать риска перегрева летом и / или снизить связанные с этим затраты на охлаждение. Общая теплоемкость внутренних помещений здания должна быть способна поглощать тепло в дневное время летнего дня, которое затем можно отводить в ночное время с помощью естественной вентиляции при более низких температурах наружного воздуха. Чем больше внутренняя теплоемкость, тем меньше будут колебания внутренней температуры. Очевидно, что, во-первых, дневные потоки тепла в здание следует ограничивать за счет оптимального затенения и удерживания окон и дверей закрытыми.

Чтобы определить полную теплоемкость помещения, вам просто нужно сложить удельную теплоемкость всех конструкций, умноженную на их фактические поверхности (потолок, пол, стена-1, стена-2,…). Используя инструмент, вы обнаружите, что поверхностная теплоемкость в основном зависит от материала самого внутреннего слоя. Этот материал должен быть достаточно теплопроводным и иметь высокую теплоемкость (в основном определяемую его объемной плотностью и проводимостью).

Это значит: бетонный потолок будет значительно лучше подвесного потолка, каменный пол будет лучше, чем паркет (или даже ковролин), толстая гипсоволокнистая плита будет лучше тонкой гипсокартонной плиты и т. Д. .

Теплоемкость внешняя площадная

Соответствуя внутренней поверхностной теплоемкости, он описывает способность строительного компонента аккумулировать тепло в суточном температурном цикле на внешней поверхности. Опять же, тепловой поток, возникающий из-за колебаний температуры на противоположной (внутренней) стороне здания, также учитывается (но обычно имеет второстепенное значение).

С практической точки зрения, внешняя поверхностная теплоемкость может быть интересна, если вы заинтересованы в уменьшении колебаний температуры вашего фасада.Это может быть вопросом комфорта, но есть и еще один важный аспект: очень маленькая внешняя теплоемкость современных фасадов из полистирола является большим недостатком. Это результат сочетания легких изоляционных материалов с очень тонким слоем штукатурки. Недостаток теплоемкости приводит к высоким температурам поверхности в дневное время и — что, возможно, даже более проблематично — к низким температурам поверхности в ночное время. Вследствие чрезвычайно низкой теплоемкости сравнительно низкий эффект радиационного охлаждения, связанный с ясным ночным небом, может снизить температуру фасада даже ниже температуры окружающего воздуха.Следовательно, уровни относительной влажности на поверхностях повышаются и довольно часто достигается точка росы. Таким образом, температура фасада немного ниже температуры окружающей среды может способствовать или значительно стимулировать рост водорослей или грибков на фасаде. В настоящее время эта проблема решается путем добавления проблемных химических ингибиторов роста к рендерам или цветам, которые представляют угрозу для окружающей среды.

Общий

Инструмент Excel разделен на четыре листа с разными функциями:

  • Инструмент расчета
    Это основной лист, на котором выполняется расчет.Введите здесь слои материала и значения поверхностного сопротивления, чтобы получить результаты (также на этом листе).
  • Интерактивная диаграмма
    На этой странице интерактивная диаграмма показывает изменения температуры и теплового потока во времени. Вы можете установить колебания температуры окружающей среды для одной или обеих сторон компонента здания и просмотреть результирующие тепловые потоки и температуры на обеих поверхностях компонента.
  • Материалы
    На этом листе я представил типовые данные для 200 широко используемых материалов.Вы можете копировать и вставлять значения в таблицу расчетов.
  • Пример проверки
    На последнем листе вычислен пример проверки, предусмотренный стандартом ISO 13786, чтобы подтвердить достоверность алгоритма.

Сопротивление поверхности R

si и R se

Помимо слоев материала, вам нужно будет ввести правильные значения поверхностного сопротивления для ваших расчетов. Они описывают теплопередачу от окружающей среды к поверхностям строительного компонента или от них.Они представляют собой упрощенную модель, поскольку реальный теплообмен происходит за счет комбинации трех различных физических процессов (излучения, конвекции, теплопроводности). Более подробную информацию о теории и рекомендуемых значениях можно найти на специальной странице.

Обратите внимание, что для этих расчетов мощности рекомендуется использовать значение 0,13 м²K / Вт для всех случаев, когда тепловые потоки в основном вызваны колебаниями внутренней температуры и нетто-среднее значение отсутствует или очень мало. тепловой поток в течение суток.Это означает, что, когда вы обычно используете 0,10 или 0,17 м²K / Вт для восходящего или нисходящего теплового потока при расчетах коэффициента теплопередачи для потолков или полов, может быть более подходящим использовать 0,13 м²K / Вт для любого случая для расчета тепла. -мощности. Когда основной тепловой поток, вызванный 24-часовыми колебаниями температуры, больше, чем средний чистый отток или приток, и, следовательно, общий тепловой поток меняет свое направление (знак) два раза в день, будет более подходящим использовать это значение.

Внутренние стены, потолки, полы

Конечно, вы также можете использовать этот инструмент для расчета теплоемкости внутренних компонентов здания.В этом случае просто используйте одно и то же значение поверхностного сопротивления (обычно 0,13 м²K / Вт) для каждой стороны компонента. Метки «внутренняя» и «внешняя» будут тогда служить только для обозначения конкретной стороны стены.

Этажи с заземлением

Вы также можете использовать этот инструмент для расчета внутренней поверхностной теплоемкости полов (или стен) с контактом с землей. Для этой цели я рекомендую добавить слой почвы толщиной 2 м (например, использовать глину / ил из списка материалов) на внешней стороне строительного элемента.В этом случае, конечно, будут интересны только значения внутреннего результата. (Для диаграммы вы должны использовать среднемесячную или среднегодовую температуру почвы на этой глубине).

Диаграмма

Диаграмма поможет вам понять эффект буферизации вашего компонента здания, а также происходящие сдвиги фаз с обеих сторон. Вы можете предположить, что температура колеблется только с одной стороны, чтобы лучше понять последствия, или вы можете предположить, что колебания температуры на обеих поверхностях отражают более реалистичную ситуацию.Суточные колебания температуры можно определить, указав среднюю температуру, амплитуду температуры, а также определенное время для максимальной температуры.

Конечно, возникающие колебания температуры также будут зависеть от результирующих тепловых потоков, проходящих через ваш компонент, но в основном они зависят от солнечной энергии и вентиляции. Следовательно, для точного определения фактических значений потребуется полное моделирование здания. Чтобы понять процесс и оценить потенциальный диапазон температур поверхности и тепловых потоков, будет достаточно использовать реалистичные предположения для внутренних и внешних температур.

Список материалов

Инструмент также включает в себя список параметров материала для прибл. 200 распространенных материалов. Вы можете использовать копирование и вставку для переноса соответствующих материалов в виде слоев на расчетный лист. Для точных расчетов следует использовать точные значения, которые обычно можно найти в паспорте конкретного продукта. Если вы используете наше программное обеспечение HTflux, вы можете использовать дополнительные материалы онлайн-базы данных материалов.

Ссылка для скачивания на бесплатный инструмент расчета

Для более подробного анализа, моделирования, базы данных свойств материалов и т. Д.пожалуйста, используйте наше программное обеспечение HTflux.

www.htflux.com, Даниэль Рюдиссер, © 2018

Этот инструмент Excel разработан для бесплатного использования и распространения. Инструменты прошли валидацию, однако мы не несем ответственности за результаты расчетов или связанные с ними убытки или ущерб.

Калькулятор толщины теплоизоляции онлайн. Определите необходимую толщину изоляции Калькулятор изоляции стен

В настоящее время существует множество бесплатных онлайн-калькуляторов и сервисов, позволяющих производить достаточно точные расчеты строительных конструкций.

В этом обзоре вы найдете подборку расчетных программ, с помощью которых можно быстро выполнить расчеты теплоизоляции, противопожарной защиты, звукоизоляции, технической изоляции, кровли, каменных конструкций и сэндвич-панелей.

Состав:

5. Калькулятор для расчета каменных конструкций.

1. Калькуляторы для расчета теплоизоляции, звукоизоляции, противопожарной защиты

Расчет толщины теплоизоляции — один из важнейших факторов, требуемых при проектировании строительных проектов.Одним из основных параметров здесь считается теплостойкость, которая рассчитывается исходя из климатической зоны конкретного региона, а также типа ограждающих конструкций. Также необходимо учитывать другие важные детали; В этом вам поможет специальная программа расчета теплоизоляции.

1.1. Онлайн-калькулятор теплоизоляции http://tutteplo.ru/138/ рассчитывает толщину изоляционного слоя зданий и сооружений в соответствии с требованиями СНиП 23-02-2003.Тепловая защита зданий. Сотрудники ОАО «Институт УралНИИАС» приняли участие в создании калькулятора для расчета толщины теплоизоляции. В качестве исходных данных требуется указать тип здания (жилое, общественное или производственное), площадь строительства, выбрать ограждающие конструкции, подлежащие теплоизоляции, и их характеристики. В качестве утеплителя доступен широкий выбор популярных брендов, таких как Rockwool, Paroc, Isover, Thermoplex и многие другие.

На основе теплотехнического расчета программа определяет толщину изоляции. При необходимости администрация сайта предоставляет бесплатные онлайн-консультации для дизайнеров и специалистов, а также по запросу могут быть высланы детальные дизайнерские материалы на электронную почту.

1.2. Калькулятор теплотехники http://www.smartcalc.ru/

Детальный теплотехнический расчет ограждающей конструкции здания можно выполнить в режиме онлайн в этой программе. Для начала сервис просит ввести данные о типе конструкций, площади застройки и температурном режиме помещения.Далее калькулятор обрабатывает информацию и выдает решение о соответствии ограждающих конструкций требованиям нормативных документов.

Возможности программы включают построение схем теплозащиты, накопления влаги и теплопотерь. Для удобства в меню представлены примеры готовых решений, ознакомившись с которыми, выполнить расчет самостоятельно не составит труда.

1.4 Калькуляторы ТехноНИКОЛЬ

Через онлайн-службу и Технониколь http: // www.tn.ru/about/o_tehnonikol/servisy/programmy_rascheta/ можно рассчитать:

  • толщина звукоизоляции;
  • расход материалов на огнезащиту металлоконструкций;
  • вид и количество материалов для плоской кровли;
  • техническая изоляция трубопроводов.

Например, рассмотрим калькулятор, который позволит выполнить расчет плоской крыши http://www.tn.ru/calc/flat/ … В начале расчета предлагается выбрать вид покрытия ТехноНИКОЛЬ (Классик, Смарт, Соло и др.) подробное описание всех типов можно найти на том же сайте в соответствующем разделе.

Следующим шагом является ввод параметров кровельного пирога, географического положения объекта и геометрических размеров конструкций кровли. Онлайн-программа предоставляет результаты расчета плоской крыши в формате Adobe Acrobat или Microsoft Excel. Отчетный документ составляется на фирменном бланке компании и содержит два типа показателей: для расширенной и развернутой форм.Полученные спецификации можно использовать непосредственно для заготовки материалов.

Также

Технониколь предлагает воспользоваться калькулятором звукоизоляции http://www.tn.ru/calc/noise_insulation/ , в котором доступны два режима — для разработчика и дизайнера. Программа расчета звукоизоляции позволяет выбрать конструкцию (стена, пол), тип помещения, источник шума и другие параметры. Кроме того, пользователь может выбрать одну из нескольких систем изоляции, подходящую для его входа.

Расчет огнестойкости металлоконструкций можно также выполнить с помощью интернет-программы http: // www.tn.ru/calc/fire_protection/ … Позволяет выбрать геометрию конструкции (двутавр, швеллер, угол, прямоугольная или круглая труба), ее параметры по ГОСТу или размеры сварной конструкции, а затем указать способ нагрева и степень нагрева. огнестойкости. После этого система рассчитает толщину противопожарной защиты и выдаст результат — необходимую толщину и объем плит, а также расходные материалы.

1.5 Тепловой калькулятор Paroc

Известный финский производитель теплоизоляционных материалов Paroc на своем российском сайте предлагает выполнить расчет всех типов изоляции http: // Calculator.paroc.ru/ в соответствии с требованиями СП 50.13330.2015 «Тепловая защита зданий».

Для этого необходимо указать структуру стены, покрытия или пола здания, уточнить температурные режимы и географию расположения объекта. В результате программа рассчитает сопротивление строительных конструкций теплопередаче и определит минимально допустимую толщину утеплителя. Отчет о проделанной работе можно распечатать или сохранить в виде файла PDF.

1,6. Теплоизоляция Baswool

Отечественная компания ООО «Агидель», производящая популярные теплоизоляционные материалы Baswool, предлагает к своей продукции бесплатный калькулятор http://www.baswool.ru/calc.html … Интерфейс ресурса очень простой, расчет предлагается выполнять в несколько шагов, пошагово указывая город постройки, категорию постройки, утепляемую конструкцию. В результате программа предоставит на выбор несколько вариантов систем утепления Baswool с указанием толщины материала.

1,7. Расчетные программы Основит

Один из лидеров отечественных производителей отделочных материалов ТМ «Основит» предлагает на своем сайте бесплатно рассчитать объем работ и стоимость их выполнения. Через калькулятор Основит http://osnovit.ru/system-calc/calc.php можно определить параметры утеплителя фасада. Введя стандартный набор исходных данных, пользователь получает окончательную спецификацию предлагаемого набора материалов для устройства теплого фасада.

Кроме того, услуга «Основит» позволяет определять расход любого материала из вашей продуктовой линейки … Преимущество такого расчета в том, что результаты даются с привязкой к единицам упаковки товара. Например, выбрав стяжку Startline FC41 N в меню категорий продуктов «Смеси для полов», указав толщину ее нанесения и общую площадь поверхности, пользователь будет знать, сколько мешков сухой смеси ему потребуется.

2.Расчет технической изоляции

2.1. Калькулятор технической изоляции от Isotec

Isotec — торговая марка известной международной компании Saint Gobain, под которой производится линия технической изоляции. Эти материалы используются для огневой обработки строительных конструкций, теплоизоляции трубопроводов отопления и кондиционирования, а также промышленных складских помещений.

На сайте компании предлагается рассчитать тепловые характеристики системы с помощью бесплатной онлайн-программы http: // калькулятор.isotecti.ru/ … Вычислитель работает в соответствии с нормами СП 61.13330.2012 (теплоизоляция оборудования и трубопроводов). Расчет выполняется по заданным критериям: температура поверхности трубопровода, транспортируемый поток, разница температурных характеристик по длине и т. Д. Необходимые условия задаются пользователем в меню сайта.

После этого необходимо выбрать один из предложенных вариантов устройства теплоизоляции Isotec (например, баллоны для трубопроводов).Программа автоматически определит толщину материала.

2. 2. Таким же образом можно рассчитать теплоизоляцию трубопроводов с помощью уже знакомого сервиса Paroc http://calculator.paroc.ru/new/ … Все расчеты выполняются в соответствии с СП 61.13330.2012 Оборудование и трубопроводы теплоизоляционное (СНиП 41-03-2003 актуализированная редакция). С его помощью можно подобрать оптимальные характеристики и тип технической изоляции.В системе предусмотрены различные методы расчета — исходя из плотности теплового потока, его температуры, предотвращения замерзания жидкости и др. Для расчета толщины теплоизоляции трубопроводов необходимо выбрать метод, ввести необходимые данные (диаметр, материал , толщина трубопровода и др.), после чего программа сразу выдаст готовый результат. При этом учитываются различные важные факторы — температура содержимого трубопровода, окружающая среда, величина механической нагрузки на трубопровод и другие.В результате калькулятор расчета теплоизоляции трубопроводов определит толщину и объем утеплителя.

3. Расчет кровли

Расчет кровельных материалов онлайн можно произвести на специализированном ресурсе металлочерепицы http://www.metalloprof.ru/calc/ … Для этого нужно выбрать форму кровли, указать ее основные размеры и определить тип кровельного материала … Программа отобразит расход металлочерепицы, количество коньков, карнизов и креплений.В результате стоимость материала будет рассчитана в соответствии с действующим прейскурантом поставщика.

4. Калькулятор для расчета сэндвич-панелей

Если вам нужно рассчитать сэндвич-панели, необходимые для строительства конкретного дома, вы также можете сделать это онлайн с помощью бесплатных калькуляторов. Довольно удобным и эффективным считается сервис Teplant, который предлагает пользователю функцию онлайн-калькулятор для примерного расчета размеров сэндвич-панелей http: // teplant.ru / calculate / и другие параметры (количество панелей и других элементов, расходные материалы). Это универсальная услуга, с помощью которой вы легко сможете рассчитать, как стеновые сэндвич-панели и кровельные сэндвич-панели … Для расчета необходимо указать тип кровли здания, ее размеры, выбрать цвет панели и их тип (стеновые, кровельные).

Программа определит количество материала, крепежа и фурнитуры и рассчитает их стоимость.

5. Калькулятор для расчета каменных конструкций

5.1. Расчет газобетона

Что касается такого популярного направления, как расчет газобетона онлайн, то для этой операции вы найдете множество подходящих сервисов в Интернете. Например, это онлайн-калькулятор для газобетона http://stroy-calc.ru/raschet-gazoblokov , с помощью которого можно легко рассчитать количество газобетонных или газосиликатных блоков, необходимое для строительства объекта.При этом учитываются все необходимые параметры — длина, ширина, плотность, высота и т. Д., Что позволяет быстро произвести расчет расчета газобетона для дома. Подобный сервис можно найти на многих других сайтах производителей стройматериалов. Например, калькулятор для расчета пенобетона от компании Bonolit выдаст вам целый список результатов — количество блоков в единицах и м3 и даже количество мешков с клеем.

Компания Бонолит, специализирующаяся на производстве автоклавного газобетона (газобетона), для удобства покупателей предоставляет бесплатную услугу по определению объемов работ при кладке стен дома.Программа расчета доступна по телефону : http://www.bonolit.ru/raschet-gazobetona/

В качестве исходных данных калькулятор запрашивает размеры дома, длину внутренних несущих стен, этажность, тип этажей, размеры и количество проемов. Результат расчетов предоставляется в виде ведомости материалов и их ориентировочной стоимости. В этом случае есть возможность сразу отправить заказ на закупку газобетона.

5.2. Расчет под кирпич

Stroy Calc Online Service http://stroy-calc.ru/raschet-kirpicha/ производит расчет стройматериалов для кладки стен дома. Параметры могут быть определены для кирпичных стен, строительных блоков, балок и бревен. Например, при возведении кирпичного здания в качестве исходных данных необходимо указать периметр, высоту и толщину стен, количество и размеры проемов, а также стоимость единицы материала. Программа определит расход кирпича кусками и кубиками, его стоимость, а также необходимый объем раствора.Это укажет вес стен для расчета фундамента. Также сервис позволяет выбрать тип и количество утеплителя. Для этого при определении параметров стен необходимо поставить галочку в соответствующем месте.

5.3 Вычислитель теплого блока Винербергера

Всемирно известный бренд Wienerberger, лидер в области теплой керамики, предлагает на своем сайте определить потребление строительных блоков Porotherm http://www.wienerberger.ru/instruments/calculation-flow-blocks … Для расчета необходимо ввести размеры стен дома, указать размеры проемов, их количество.

Программа подберет возможные варианты кладки и выдаст стоимость блоков различных параметров. Результат такого расчета будет ориентировочным, но этих данных будет вполне достаточно для составления предварительной сметы строительства. Для уточнения объема работ ресурс предлагает обратиться к специалисту компании.

Итак, в этой статье мы рассмотрели наиболее удобные и популярные онлайн-сервисы, предназначенные для расчета строительных материалов… Стоит отметить, что каждый из них бесплатный, а также имеет удобный современный интерфейс. Все эти ресурсы разработаны в виде подробных калькуляторов, размещенных прямо на страницах сайтов. Таким образом, вы можете легко и быстро выполнить необходимые вам вычисления.

Правильный расчет теплоизоляции повысит комфорт дома и снизит затраты на отопление. При строительстве не обойтись без утеплителя , толщина которого определяется климатическими условиями региона и используемыми материалами. Для утепления используют пенополистирол, пеноплекс, минеральную вату или эковату, а также штукатурку и другие отделочные материалы.

Для расчета толщины утеплителя необходимо знать значение минимального термического сопротивления … Это зависит от особенностей климата. При его расчете учитывается продолжительность отопительного периода и разница между внутренней и внешней (средней за то же время) температурой.Так, для Москвы сопротивление теплопередаче для наружных стен жилого дома должно быть не менее 3,28, в Сочи достаточно 1,79, а в Якутске требуется 5,28.

Термическое сопротивление стены определяется как сумма сопротивлений всех структурных слоев, несущих и изоляционных. поэтому толщина изоляции зависит от материала, из которого сделана стена. … Для кирпичных и бетонных стен требуется больше изоляции, меньше для дерева и пеноблоков.Обратите внимание на толщину материала, выбранного для несущих конструкций, и какова его теплопроводность. Чем тоньше несущие конструкции, тем большей должна быть толщина утеплителя.

Если требуется толстый утеплитель, лучше утеплить дом снаружи. Это обеспечит экономию внутреннего пространства … Кроме того, внешняя изоляция позволяет избежать скопления влаги внутри помещения.

Теплопроводность

Способность материала передавать тепло определяется его теплопроводностью.Дерево, кирпич, бетон, пеноблоки по-разному проводят тепло. Воздух с повышенной влажностью увеличивает теплопроводность. Величина, обратная теплопроводности, называется термическим сопротивлением. Для его расчета используется значение теплопроводности в сухом состоянии, которое указывается в паспорте используемого материала. Вы также можете найти его в таблицах.

Однако следует учитывать, что в углах, стыках несущих конструкций и других специальных конструктивных элементах теплопроводность выше, чем на ровной поверхности стен.Могут возникнуть мостики холода, по которым тепло будет уходить из дома. Стены в этих местах потеют. Чтобы этого не произошло, значение термического сопротивления в таких местах увеличивают примерно на четверть по сравнению с минимально допустимым.

Пример расчета

Рассчитать толщину теплоизоляции на простом калькуляторе несложно. Для этого сначала необходимо рассчитать сопротивление теплопередаче для несущей конструкции. Толщина конструкции делится на теплопроводность используемого материала.Например, пенобетон плотностью 300 имеет коэффициент теплопроводности 0,29. При толщине блока 0,3 метра значение теплового сопротивления:

.

Рассчитанное значение вычитается из минимального значения. Для московских условий изоляционные слои должны иметь сопротивление не менее:

Затем, умножив теплопроводность изоляции на необходимое тепловое сопротивление, получаем необходимую толщину слоя. Например, для минеральной ваты с коэффициентом теплопроводности 0.045, толщина не должна быть меньше:

0,045 * 2,25 = 0,1 м

Помимо термического сопротивления учитывается расположение точки росы. Точка росы — это место в стене, где температура может упасть настолько, что возникнет конденсат — роса. Если это место находится на внутренней поверхности стены, она запотевает и может начаться процесс гниения. Чем холоднее на улице, тем ближе точка росы к комнате. Чем теплее и влажнее в помещении, тем выше температура точки росы.

Толщина утеплителя в каркасном доме

В качестве утеплителя для каркасного дома чаще всего выбирают минеральную вату или эковату.

Требуемая толщина определяется по тем же формулам, что и для традиционного строительства. Дополнительные слои многослойной стены дают примерно 10% ее стоимости. Толщина стен каркасного дома меньше, чем при традиционной технологии, а точка росы может быть ближе к внутренней поверхности. поэтому не стоит слишком сильно экономить на толщине утеплителя.

Как рассчитать толщину изоляции крыши и чердака

В формулах расчета сопротивления кровли используются те же, но минимальное тепловое сопротивление в этом случае немного выше. Неотапливаемые чердаки покрыты объемным утеплителем. Ограничений по толщине нет, поэтому рекомендуется увеличить ее в 1,5 раза относительно расчетной. В мансардных помещениях для утепления кровли используются материалы с низкой теплопроводностью.

Как рассчитать толщину утеплителя пола

Хотя наибольшие потери тепла происходят через стены и крышу, не менее важно правильно рассчитать изоляцию пола. Если цоколь и фундамент не утеплены, считается, что температура в черновом полу равна температуре наружного воздуха, а толщина утеплителя рассчитывается так же, как и для наружных стен. Если делается утепление подвала, его сопротивление вычитается из значения минимально необходимого термического сопротивления для района строительства.

Расчет толщины пенопласта

Популярность полистирола определяется его дешевизной, низкой теплопроводностью, малым весом и влагостойкостью. Пена практически непроницаема для пара, поэтому ее нельзя использовать для внутреннего утепления. … Находится снаружи или посередине стены.

Теплопроводность пенопласта, как и других материалов, зависит от плотности … Например, при плотности 20 кг / м3 коэффициент теплопроводности составляет около 0.035. Таким образом, толщина пены 0,05 м обеспечит тепловое сопротивление 1,5.

Теплый дом — мечта каждого хозяина; Для достижения этой цели возводятся толстые стены, проводится отопление, устраивается качественная теплоизоляция. Чтобы утеплитель был рациональным, необходимо правильно выбрать материал и правильно рассчитать его толщину.

Размер изоляционного слоя зависит от термического сопротивления материала. Этот показатель является обратной величиной теплопроводности.Каждый материал — дерево, металл, кирпич, пенопласт или минеральная вата — обладает определенной способностью передавать тепловую энергию … Коэффициент теплопроводности рассчитывается при лабораторных испытаниях, а для потребителей указывается на упаковке.

Если материал приобретается без маркировки, сводную таблицу показателей можно найти в Интернете.

Тепловое сопротивление материала ® — величина постоянная, она определяется как отношение разницы температур на краях изоляции к силе теплового потока, проходящего через материал.Формула расчета коэффициента: R = d / k, где d — толщина материала, k — коэффициент теплопроводности. Чем выше полученное значение, тем эффективнее теплоизоляция.

Почему важно правильно рассчитать значения изоляции?

Теплоизоляция устанавливается для уменьшения потерь энергии через стены, пол и крышу дома. Недостаточная толщина изоляции приведет к смещению точки росы внутри здания. Это означает появление конденсата, сырости и грибка на стенах дома.Избыточный слой теплоизоляции не дает существенного изменения температурных показателей, но требует значительных финансовых затрат, поэтому нерационально. Это нарушает циркуляцию воздуха и естественную вентиляцию между комнатами дома и атмосферой. Чтобы сэкономить при обеспечении оптимальных условий проживания, необходим точный расчет толщины утеплителя.

Расчет слоя теплоизоляции: формулы и примеры

Чтобы точно рассчитать количество утеплителя, необходимо найти коэффициент сопротивления теплопередаче всех материалов стены или другой части дома.Он зависит от климатических показателей местности, поэтому рассчитывается индивидуально по формуле:

GSOP = (tv-tot) xz от

tv — индикатор температуры в помещении, обычно 18-22ºC;

tot — значение средней температуры;

зфр — продолжительность отопительного сезона, сутки.

Значения для подсчета можно найти в СНиП 23-01-99.

При расчете термического сопротивления конструкции необходимо складывать показатели каждого слоя: R = R1 + R2 + R3 и т. Д.Исходя из средних показателей для частных и многоэтажных домов, определяются примерные значения коэффициентов:

  • стен — не менее 3,5;
  • потолок — от 6.

Толщина утеплителя зависит от строительного материала и его размеров, чем меньше термическое сопротивление стены или крыши, тем больше должен быть слой утеплителя.

Пример: стена из силикатного кирпича толщиной 0,5 м, утепленная пеной.

Рст. = 0,5 / 0,7 = 0,71 — термическое сопротивление стены

R- Rst. = 3,5-0,71 = 2,79 — значение для пены

Для пены теплопроводность k = 0,038

d = 2,79 × 0,038 = 0,10 м — необходимы плиты пенопласта толщиной 10 см

С помощью этого алгоритма легко рассчитать оптимальное количество теплоизоляции для всех участков дома, кроме пола. При расчете утеплителя основания необходимо руководствоваться таблицей температур грунта в регионе проживания.Именно из него берутся данные для расчета GSOP, а затем рассчитывается сопротивление каждого слоя и желаемое значение изоляции.

Популярные способы утеплить дом

Утепление здания может производиться на стадии строительства или после его завершения. Популярные методы включают:

  • Монолитная стена значительной толщины (не менее 40 см) из керамического кирпича или дерева.
  • Возведение ограждающих конструкций кладкой колодцев — создание полости для утепления между двумя частями стены.
  • Монтаж внешней теплоизоляции в виде многослойной конструкции из утеплителя, обрешетки, гидроизоляционной пленки и декоративной отделки.

По готовым формулам можно без помощи специалиста рассчитать оптимальную толщину утеплителя. При подсчете следует округлить число в большую сторону; небольшой запас по размеру слоя утеплителя пригодится при временных перепадах температуры ниже средней.

С помощью этого калькулятора вы можете рассчитать толщину утеплителя для стен дома и других заборов в соответствии с регионом вашего проживания, материалом и толщиной стен, используемой пароизоляцией, материалом для подшивки и др. важные параметры для утеплителя.Подбирая разные материалы, вы сможете выбрать для себя вариант максимально теплый и дешевый.

Калькулятор температурной точки росы

С помощью этого калькулятора вы можете рассчитать оптимальную толщину утеплителя для вашего дома и жилых помещений в соответствии с регионом проживания, материалом и толщиной стен. Вы можете рассчитать толщину различных изоляционных материалов. И четко видеть на графике место конденсата в стене. Удобный калькулятор теплопроводности стены в режиме онлайн для расчета толщины утеплителя.

Калькулятор КНАУФ Расчет необходимой толщины теплоизоляции

Рассчитайте необходимую толщину теплоизоляционного материала в крупных городах Российской Федерации в различных конструкциях на теплотехническом калькуляторе КНАУФ, созданном профессионалами КНАУФ Инсулейшн. Все расчеты производятся согласно СНиП 23-02-2003 «Тепловая защита зданий», для всех типов зданий. Бесплатный онлайн-сервис расчета теплоизоляции КНАУФ, удобный и понятный интерфейс.

Калькулятор Rockwool для расчета толщины изоляции стен

Калькулятор разработан специалистами Rockwool для расчета необходимой толщины теплоизоляции и оценки экономической эффективности ее установки. Сделать теплотехнический расчет, выбрать подходящую марку теплоизоляции и рассчитать необходимое количество пачек очень просто.

В последнее время очень острые дискуссии по поводу утепления стен. Одни советуют утеплять, другие считают это экономически неоправданным.Обычному разработчику, не обладающему специальными знаниями в области теплофизики, сложно все это разобраться. Односторонние теплые стены связаны с меньшими расходами на отопление. С другой стороны, «ценовой вопрос» — теплые стены обойдутся застройщику дороже.

Приведем пример. По расчетам получается, что 50 мм пенобетона уменьшат теплопотери 50 см пенобетона всего на 20%. Те. 80% тепла в доме сэкономит пенобетон и только 20% — пена.Тут действительно стоит задуматься, стоит ли топить дом? Стоит свеч? С другой стороны, при утеплении кирпичной стены 50 см пенопласт снизит теплопотери в 1,5 раза. Кирпич сэкономит 40% тепла, а пенопласт — 60%. Разобраться с этим вопросом поможет расчет толщины утеплителя для стен в режиме онлайн.

Из этого делаем вывод, что в каждом индивидуальном случае следует учитывать необходимую толщину изоляционного материала для стен вашего дома и сколько вы сэкономите на отоплении после обогрева и через какое время окупятся приобретенные материалы и все работы. выключенный.

Деревянные дома, наверняка, никогда не потеряют актуальности и не уйдут с пика популярности. Теплая, приятная, здоровая структура качественной древесины не идет ни в какое сравнение ни с камнем, ни с растворами, тем более ни с какими полимерами. Тем не менее, теплоизоляционные качества древесины хоть и достаточно высокие, но все же недостаточны для обеспечения максимально комфортного микроклимата в доме, и приходится прибегать к дополнительному утеплению стен.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *