Расчет толщины стены по теплопроводности из разных материалов
Чтобы определить, какой толщины возводить стену при постройке дома, нужно научиться рассчитать теплопроводность стен. Этот показатель зависит от используемых строительных материалов, климатических условий.
Нормы толщины стен в южных и северных регионах будут различаться. Если не сделать расчет до начала строительства, то может оказаться так, что в доме зимой будет холодно и сыро, а летом слишком влажно.
Чтобы этого избежать, нужно высчитать коэффициент сопротивления теплопередачи материала для постройки стен и утеплителя.
Для чего нужен расчет
Толщина стен в южных и северных широтах должна отличатьсяЧтобы сэкономить на отоплении и способствовать созданию здорового микроклимата в помещении, нужно правильно рассчитать толщину стен и утеплительных материалов, которые будем использовать при строительстве. По закону физики, когда на улице холодно, а в помещении тепло, то через стену и кровлю тепловая энергия выходит наружу.
Если неправильно рассчитать толщину стен, сделать их слишком тонкими и не утеплить, это приведет к негативным последствиям:
- зимой стены будут промерзать;
- на обогрев помещения будут затрачиваться значительные средства;
- сместиться точка росы, что приведет к образованию конденсата и влажности в помещении, заведется плесень;
- летом в доме будет так же жарко, как и под палящим солнцем.
Чтобы избежать этих неприятностей, нужно перед началом строительства просчитать показатели теплопроводности материала и определиться, какой толщины возводить стену, и каким теплосберегающим материалом ее утеплять.
От чего зависит теплопроводность
Проводимость тепла во многом зависит от материала стенПроводимость тепла рассчитывают исходя из количества тепловой энергии, проходящей через материал площадью 1 кв. м. и толщиной 1 м при разнице температур внутри и снаружи в один градус. Испытания проводят в течение 1 часа.
Проводимость тепловой энергии зависит от:
- физических свойств и состава вещества;
- химического состава;
- условий эксплуатации.
Теплосберегающими считаются материалы с показателем менее 17 ВТ/ (м·°С).
Выполняем расчеты
Сопротивление передаче тепла должно быть больше минимума, указанного в нормативахРасчет толщины стен по теплопроводности является важным фактором в строительстве. При проектировании зданий архитектор рассчитывает толщину стен, но это стоит дополнительных денег. Чтобы сэкономить, можно разобраться, как рассчитать нужные показатели самостоятельно.
Скорость передачи тепла материалом зависит от компонентов, входящих в его состав. Сопротивление передачи тепла должно быть больше минимального значения, указанного в нормативном документе «Тепловая изоляция зданий».
Рассмотрим, как рассчитать толщину стены в зависимости от применяемых в строительстве материалов.
Формула расчета:
R=δ/ λ (м2·°С/Вт), где:
δ это толщина материала, используемого для строительства стены;
λ показатель удельной теплопроводности, рассчитывается в (м2·°С/Вт).
Когда приобретаете стройматериалы, в паспорте на них обязательно должен быть указан коэффициент теплопроводности.
Значения параметров для жилых домов указаны в СНиП II-3-79 и СНиП 23-02-2003.
Допустимые значения в зависимости от региона
Минимально допустимое значение проводимости тепла для различных регионов указано в таблице:
№ | Показатель теплопроводности | Регион |
---|---|---|
1 | 2 м2•°С/Вт | Крым |
2 | 2,1 м2•°С/Вт | Сочи |
3 | 2,75 м2•°С/Вт | Ростов—на—Дону |
4 | 3,14 м2•°С/Вт | Москва |
5 | 3,18 м2•°С/Вт | Санкт—Петербург |
У каждого материала есть свой показатель проводимости тепла. Чем он выше, тем больше тепла пропускает через себя этот материал.
Показатели теплопередачи для различных материалов
Величины проводимости тепла материалами и их плотность указаны в таблице:Материал | Величина теплопроводности | Плотность |
---|---|---|
Бетонные | 1,28—1,51 | 2300—2400 |
Древесина дуба | 0,23—0,1 | 700 |
Хвойная древесина | 0,10—0,18 | 500 |
Железобетонные плиты | 1,69 | 2500 |
Кирпич с пустотами керамический | 0,41—0,35 | 1200—1600 |
Теплопроводность строительных материалов зависит от их плотности и влажности. Одни и те же материалы, изготовленные разными производителями, могут отличаться по свойствам, поэтому коэффициент нужно смотреть в инструкции к ним.
Расчет многослойной конструкции
При расчете многослойной конструкции суммируйте показатели теплосопротивляемости всех материаловЕсли стену будем строить из различных материалов, допустим, кирпич, минеральная вата, штукатурка, рассчитывать величины следует для каждого отдельного материала. Зачем полученные числа суммировать.
В этом случае стоит работать по формуле:
Rобщ= R1+ R2+…+ Rn+ Ra, где:
R1-Rn- термическое сопротивление слоев разных материалов;
Ra.l– термосопротивление закрытой воздушной прослойки. Величины можно узнать в таблице 7 п. 9 в СП 23-101-2004. Прослойка воздуха не всегда предусмотрена при постройке стен. Подробнее о расчетах смотрите в этом видео:
На основании этих подсчетов можно сделать вывод о том, можно ли применять выбранные стройматериалы, и какой они должны быть толщины.
Последовательность действий
Первым делом, нужно выбрать строительные материалы, которые будете использовать для постройки дома. После этого рассчитываем термическое сопротивление стены по описанной выше схеме. Полученные величины следует сравнивать с данными таблиц. Если они совпадают или оказываются выше, хорошо.
Если величина ниже, чем в таблице, тогда нужно увеличить толщину утеплителя или стены, и снова выполнить подсчет. Если в конструкции присутствует воздушная прослойка, которая вентилируется наружным воздухом, тогда в учет не следует брать слои, находящиеся между воздушной камерой и улицей.
Как выполнить подсчеты на онлайн калькуляторе
Чтобы получить нужные величины, стоит ввести в онлайн калькулятор регион, в котором будет эксплуатироваться постройка, выбранный материал и предполагаемую толщину стен.
В сервис занесены сведения по каждой отдельной климатической зоне:
- t воздуха;
- средняя температура в отопительный сезон;
- длительность отопительного сезона;
- влажность воздуха.
Сведения, одинаковые для всех регионов:
- температура и влажность воздуха внутри помещения;
- коэффициенты теплоотдачи внутренних, наружных поверхностей;
- перепад температур.
Чтобы дом был теплым, и в нем сохранялся здоровый микроклимат, при выполнении строительных работ нужно обязательно выполнять расчет теплопроводности материалов стены. Это несложно сделать самостоятельно или воспользовавшись онлайн калькулятором в интернете. Подробнее о том, как пользоваться калькулятором, смотрите в этом видео:
Для гарантировано точного определения толщины стен можно обратиться в строительную компанию. Ее специалисты выполнят все необходимые расчеты согласно требованиям нормативных документов.
Калькулятор расчета толщины стен онлайн
Данный калькулятор позволяет рассчитать ориентировочную толщину стен будущего дома. Для этого необходимо выбрать регион, где будет располагаться строение, температуру и материал, из которого будут изготовлены стены.
Онлайн калькулятор расчета толщины стен дома основан на СНиП II-3-79 «Строительная теплотехника» и СНиП 23-01-99 «Строительная климатология».
Район проживания:Майкоп
АлейскБарнаулБеляБийскЗмеиного рскКатандаКош-АгачОнгудайРодиноРубцовскСлавгородТогул
АрхараБелогорскБлаговещенскБомнакБратолюбовкаВыссаГошДамбукиЕрофей ПавловичЗавитинскЗеяНорский складОрогонПоярковоСвободныйСковородиноСредняя НожкаТыган-УрканТындаУнахаУсть-НожкаЧерняевоШимановскЭкиман
АрхангельскБорковскаяЕмецкКой насМезеньОнега
АстраханьВерхний Баскунчак
БелорецкДуванМелеузУфаЯнаул
Белгород
Брянск
БабушкинБаргузинБагдаринКяхтаМондыНижнеангарскСосново-ОзерскоеУкаитУлан-УдэХоринск
ВладимирМуром
ВолгоградКотельниковоЭльтон
ВологдаВытеграНикольскТотьма
Воронеж
ДербентМахачкала
ИвановоКинешма
АлыгджерБодайбоБратскВерхняя ГутараДубровскоеЕрбогаченЖигаловоЗимаИкаИлимскИркутскИчераКиренскМамаМарковоНаканноНевонНепаОрлингаПеревозПреображенкаСлюдянкаТайшетТулунУсть-Ордынский — Бурятский АО
Калининград
Элиста
Калуга
Апука — Корякский ДОИча — Корякский АОКлючиКозыревскКорф — Корякский АОЛопатка, мысМильковоНачикио. БерингаОссора — Корякский АОПетропавловск-КамчатскийСемлячикиСоболевоКронокиУкаОктябрьскаяУсть-Воямполка — Корякский АОУсть-КамчатскУсть-Хайрюзово
Черкесск
КемьЛоухиОлонецПанадыПетрозаводскРеболы
КемеровоКиселевскКондомаМариинскТайгаТисульТопкиУстъ-Кабырза
ВяткаНагорскоеСовали
ВендингаВоркутаОбъячевоПетруньПечораСыктывкарТроицко-ПечорскУсть-УсаУсть-ЦильмаУсть-ЩугорУхта
КостромаЧухломаШарья
КраснодарСочиТихорецк
АгатаАчинскБайкит — Эвенкийский АОБоготолБогучаныВанавара — Эвенкийский АОВельмоВерхнеимбатскВолочанкаДиксон — Таймырский АОДудинка — Таймырский АОЕнисейскЕссей — Эвенкийский АОИгаркаКанскКежмаКлючиКрасноярскМинусинскТаимбаТроицкоеТура — Эвенкийский АОТуруханскХатанга — Таймырский АОЧелюскин, мыс — Таймырский АОЯрцево
Ай-ПетриКлепининоСимферопольФеодосияЯлта
Курган
Курск
Липецк
СвирицаТихвинСанкт-Петербург
АркагалаБроховоМагаданОмсукчанПалаткаСреднеканСусуман
Йошкар-Ола
Саранск
ДмитровКашираМосква
Вайда-ГубаКандалакшаКовдорКраснощельеЛовозероМончегорскМурманскНиванкюльПулозероПялицаТериберкаТерско-ОрловскийУмбаЮкспор
АрзамасВыксаНижний Новгород
Новгород
БарабинскБолотноеКарасукКочкиКупиноКыштовкаНовосибирскТатарскЧулым
Исиль-КульОмскТараЧерлак
Оренбург
Оренбург
ЗеметчиноПенза
БисерПермь
АнучиноАстраханкаБогопольВладивостокДальнереченскМельничноеПартизанскПосьетПреображениеРудная ПристаньЧугуевка
Великие ЛукиПсков
МиллеровоРостов-на-ДонуТаганрог
Рязань
Самара
ВерхотурьеЕкатеринбургИвдель
Саратов
Александровск-СахалинскийДолинскКировскоеКорсаковКурильскМакаровНевельскНогликиОхаПогибиПоронайскРыбновскХолмскЮжно-КурильскЮжно-Сахалинск
Владикавказ
ВязьмаСмоленск
Тамбов
БугульмаЕлабугаКазань
БежецкТверьРжев
АлександровскоеКолпашевоСредний ВасюганТомскУсть-Озерное
Кызыл
Тула
Березово — Ханты-Мансийский АОДемьянскоеКондинское — Ханты-Мансийский АОЛеушиМарресаляНадымОктябрьскоеСалехардСосьваСургут — Ханты-Мансийский АОТарко-Сале — Ямало-Ненецкий АОТобольскТюменьУгутУренгой — Ямало-Ненецкий АОХанты-Мансийск — Ханты-Мансийский АО
ГлазовИжевскСарапул
СурскоеУльяновск
АянБайдуковБикинБираБиробиджанВяземскийГвасюгиГроссевичиДе-КастриДжаорэЕкатерино-НикольскоеКомсомольск-на-АмуреНижнетамбовскоеНиколаевск-на-АмуреОблучьеОхотскИм.Полины ОсипенкоСизиманСоветская ГаваньСофийский ПриискСредний УргалТроицкоеХабаровскЧумиканЭнкэн
АбаканШира
Челябинск
Грозный
АгинскоеАкшаАлександровский ЗаводБорзяДарасунКалаканКрасный ЧикойМогочаНерчинскНерчинский ЗаводСредний КаларТунгокоченТупикЧараЧита
ПорецкоеЧебоксары
АнадырьМарковоОстровноеУсть-ОлойЭньмувеем
АлданАллах-ЮньАмгаБатамайБердигястяхБуягаВерхоянскВилюйскВитимВоронцовоДжалиндаДжарджанДжикимдаДружинаЕкючюЖиганскЗырянкаИситьИэмаКрест-ХальджайКюсюрЛенскНагорныйНераНюрбаНюяОймяконОлекминскОленекОхотский ПеревозСангарСаскылахСреднеколымскСунтарСуханаСюльдюкарСюрен-КюельТокоТоммотТомпоТуой-ХаяТяняУсть-МаяУсть-МильУсть-МомаЧульманЧурапчаШелагонцыЭйикЯкутск
ВарандейИндигаКанин НосКоткиноНарьян-МарХодоварихаХоседа-Хард
Ярославль
Комфортная температура в доме:
Материал стен:
ЖелезобетонБетон на гравии или щебне из природного камняКерамзитобетонГазо- и пенобетон, газо- и пеносиликат
Глиняный обыкновенный на цементно-песчаном раствореСиликатный на цементно-песчаном раствореКерамический пустотный на цементно-песчаном растворе
Сосна и ельДуб
Маты минераловатные прошивныеПлиты из стеклянного штапельного волокна
Медь (для сравнения)Стекло оконное
HEBEL D400HEBEL D500YTONG D400H+H D400H+H D500H+H D600КЗСМ D400КЗСМ D500КЗСМ D600EuroBlok D400EuroBlok D500EuroBlok D600ЭКО D400ЭКО D500ЭКО D600Bonolit D300Bonolit D400Bonolit D500Bonolit D600AeroStone D400AeroStone D500AeroStone D600AeroStone D700AeroStone D800ГРАС D400ГРАС D500ГРАС D600
BRAER Ceramic Thermo 14,3 NFBRAER Ceramic Thermo 12,4 NF BRAER BLOCK 44BRAER Ceramic Thermo 10,7 NFBRAER Ceramic Thermo 10,7 NF тип 2 BRAER BLOCK 25Porotherm 8Porotherm 12Porotherm 25Porotherm 38Porotherm 44Porotherm 51Porotherm 51 Premium
ISOVER ОптималROCKWOOL ЛАЙТ БАТТСROCKWOOL КАВИТИ БАТТСROCKWOOL РОКФАСАДKNAUF Insulation Термо Плита 037KNAUF Insulation Фасад Термо Плита 034KNAUF Insulation Фасад Термо Плита 032
ISOVER Классик Плюс
Рассчитать
Калькулятор толщины теплоизоляции. Расчет утелителя онлайн
Калькулятор толщины теплоизоляции. Расчет утелителя онлайн Перейти к содержанию- Калькулятор толщины утеплителя для стен, потолка, пола С помощью данного калькулятора вы сможете рассчитать толщину утеплителя для стен дома и других ограждений в соответствии с регионом вашего проживания, материала и толщины стен, используемой пароизоляции, материала для подшивки и других важных параметров при утеплении. Подбирая разные материалы, можно выбрать вариант для себя максимально теплый и дешевый.
- Теплотехнический калькулятор для расчета точки росы С помощью данного калькулятора вы сможете рассчитать оптимальную толщину утеплителя для дома и жилых помещений в соответствии с регионом проживания, материала и толщины стен. Вы сможете рассчитать толщину различных утеплительных материалов. И увидеть наглядно на графике место выпадения конденсата в стене. Удобный калькулятор теплопроводности стены онлайн для расчета толщины утепления.
- Калькулятор KNAUF Расчет необходимой толщины теплоизоляции Рассчитайте необходимую толщину теплоизоляционного материала в основных городах РФ в различных конструкциях на теплотехническом калькуляторе KNAUF, созданном профессионалами из KNAUF Insulation. Все расчеты производятся по требованию СНиП 23-02-2003 «Тепловая защита зданий», для всех типов зданий. Бесплатный онлайн сервис расчета теплоизоляции KNAUF, удобный и понятный интерфейс.
- Калькулятор Rockwool расчёта толщины теплоизоляции стен Калькулятор разработан специалистами Rockwool для помощи в расчёте необходимой толщины теплоизоляции и оценке экономической эффективности её установки. Произвести теплотехнический расчет, подобрать подходящую марку теплоизоляции и рассчитать необходимое количество пачек очень просто.
Расчет утеплителя стен — калькулятор для теплоизоляции стены
Если стены в доме выполняются небольшой толщины, то появляется необходимость в их утеплении, потому что с наступлением холодов в помещениях будет не очень комфортно, а также в комнатах появится излишняя сырость.
Точный расчет утеплителя стен, калькулятор
Обеспечение теплосбережения позволяет существенно экономить на электрической энергии и затратах на отопление дома. При этом следует правильно рассчитать материалы, которые должны использоваться в теплоизоляции, а также их количество.
Только эффективные утеплители способны справиться с обеспечением оптимального температурного режима в помещениях и значительно снизить потери тепла.
Утеплители могут быть установлены:
- С наружной стороны дома,
- Внутри стены,
- Во внутренней части.
Дополнительно используется отделка, чтобы под ней спрятать установленный утеплитель. Теплоизоляционные материалы создают тепловую защиту перегородок и стен, поэтому потребитель снижает потери электроэнергии, и для строительства нужно применять меньше строительных материалов.
Если воспользоваться теплоизоляционными материалами в необходимых объемах, строительство получится менее затратным и трудоемким.
Но предварительно нужно провести расчет утеплителя стен, калькулятор поможет, и тогда будут определены объемы теплоизоляционных материалов для каждого конкретного случая и для определенных эксплуатационных условий.
Снижается уровень нагрузки на стены и на фундамент, поэтому при формировании основания потребуется меньшая глубина и меньшее количество бетона.
Как применяется расчет утеплителя стен, калькулятор
Главным показателем теплоизоляционных материалов и строительных конструкций является сопротивление тепловой передачи, и оно обозначается R0. И если возникает необходимость вычислять толщину теплоизоляционного материала, нужного для утепления наружных стен, то используется:
- αут=(R0тр/r-0,16-δ/λ)·λут
- символы в данном выражении обозначают следующее:
- αут — ширину утеплителя, в метрах
- R0тр — сопротивление теплопередаче наружных стен, м2· °С/Вт, данное значение можно найти в таблице,
- δ — ширина несущей части стены, в метрах,
- λ — коэффициент теплопроводности несущей части стены, Вт/(м · °С), также определяется по специальной таблице,
- λут — коэффициент теплопроводности материала, который служит теплоизолятором, Вт/(м · °С), табличное значение,
- r — коэффициент теплотехнической однородности, обладает определённым значением, зависящим от способа отделки или кладки.
Если используется строительная конструкция в несколько слоев, то значение δ/λ должно быть заменено на итоговую сумму каждого слоя.
Теплотехнические расчеты, направленные на получение оптимального результата, имеют большое значение, и рекомендуется их проводить перед началом строительства сооружений.
Но еще есть возможность для обеспечения теплоизоляции после того, как возведен дом, и тогда придется проводить дополнительные отделочные работы.
Для чего нужен расчет теплоизоляции стены, калькулятор
Следует воспользоваться калькулятором онлайн, который быстро подведет итоги заложенных данных, чтобы вы имели возможность приобрести теплоизоляционные материалы с определенными качествами.
В процессе проведения расчета обязательно учитываются климатические особенности региона, в котором будет производиться строительство объекта.
Кроме того, каждая стена направлена на определенную сторону света и одна из них может прогреваться больше, а другая меньше, и этот фактор также должен обязательно учитываться при расчете.
Нужно производить расчет теплоизоляции стены, калькулятор здесь изрядно поможет, чтобы провести подробный и обстоятельный анализ возможностей и свойств различных теплоизоляционных материалов. Также вам будет проще узнать параметры по теплопроводности различных строительных материалов, из которых делаются:
- Потолки,
- Пол,
- Стены,
- Перегородки,
- Перекрытия.
Вы точно вычислите толщину пластиковых расширителей, которые используются при монтажных работах на лоджиях и балконах. Когда боковые стены граничат с комнатой, которая отапливается, есть вариант с использованием утепления наружных углов. Причем угол утепляется специальным утеплителем, который должен быть шире площади промерзания наружной стены.
Также следует добавить еще 5 сантиметров к этому значению, чтобы добиться оптимального теплоизоляционного слоя, иначе будут наблюдаться потери тепла.
калькулятор расчета толщины утеплителя (теплоизоляции) для стен
СодержаниеВ процессе утепления стен минеральной ватой для утепления стен очень важно заранее рассчитать все параметры теплоизоляции. Убедиться в том, что вы все сделали правильно.
Только после расчета следует приступать непосредственно к монтажу утеплителя. Но как выполнить расчет теплоизоляции правильно и не сделать ошибку во время его осуществления?
Монтаж пенополистирольных плит на стену
Сейчас мы в этом подробно разберемся.
1 Зачем нужен расчет?
Кто-то из вас может задать закономерный вопрос, а зачем собственно рассчитывать все так дотошно?
Ведь можно просто на глаз взять, к примеру, 10 сантиметров утеплителя из пенопласта, и его наверняка хватит для полноценного утепления дома.
И действительно, при отделке тех же стен часто расчет вообще не выполняется. Но это не всегда правильно.
Если вы экономный человек и желаете расходовать свои средства правильно, то вам придется выполнить несколько простых действий.
Это необходимо для того, чтобы получить возможность использовать точное количество утеплительного материала. При этом его будет достаточно и для надежной теплоизоляции, и для размещения точки росы в правильном месте.
С теплоизоляцией все и так понятно, даже если производится утепление ангара с помощью ППУ. Если толщины утеплителя не хватит, то поверхность стен не будет защищена должным образом. Рано или поздно она промерзнет, а это значит, что температура у вас в доме упадет, и очень быстро.
Тут важно использовать формулы расчета, чтобы не прогадать с толщиной, при этом не затрачивая лишних средств на работу. Ведь лишние пару сантиметров того же пенопласта – это тоже деньги.
В особенности если вы собираетесь отделывать всю наружную поверхность стен. На таких площадях перерасход теплоизоляции может существенно отразиться на вашем кошельке.
к меню ↑
1.1 Что такое точка росы?
Второй – более неочевидный момент, заключается в необходимости смещения точки росы. Для стен, особенно наружных, важно просчитать точку росы правильно.
Точкой росы называют место отложения конденсата. Конденсат образуется из-за пара, что проходит через стену. Выходит он из помещений внутри. Это нормальный процесс. Поверхность стен постоянно подвергается воздействию пара, так как пар – это продукт жизнедеятельности человека.
Горячий, слегка увлаженный воздух довольно легко проходит через почти все конструкции. И если стена не защищена пароизоляцией, то пар будет беспрепятственно выходить наружу.
Внутреннее утепление стен минеральной ватой по каркасу
Однако выход пара может существенно затрудниться, если температура разных конструкций имеет разные показатели.
Наверняка вы видели, как на поверхности стен в сарае или на даче скапливается вода даже с утеплителем для стен снаружи. Она появляется ниоткуда и провоцирует появление на площади стен грибков, а также других подобных неприятностей.
Образуется конденсат из-за того, что неутепленные стены имеют пониженную температуру. Они промерзают, и на внешнем крае стены появляется так называемая точка росы. Положение, где температура конструкции находится на уровне примерно 10 градусов по Цельсию.
Именно в этом месте при образовании конфликта температур происходит физический процесс образования конденсата.
Если человек позаботился о монтаже утеплителя на поверхность стен, то они уже не промерзнут так, как раньше. Однако это не значит, что проблема решена. Без основательного расчета утеплитель может тоже частично промерзать. Это означает, что точка росы просто сместится на дальний край утеплителя.
Все бы ничего, да вот только большинство теплоизоляционных материалов влагу не любят, особенное ее избыточное количество. Нахождение в таких условиях может привести к различным неприятностям.
А всего этого можно избежать, если использовать калькулятор для расчета рабочей толщины теплоизоляции стен.
к меню ↑
1.2 Функции калькулятора
Выполнять расчет толщины для утепления стены можно вручную, а можно и с помощью калькулятора.
Калькулятор в привычном понимании – это специальная вычислительная машина, которая помогает проводить нам расчеты. Он часто используется даже при ручном выведении оптимальной толщины стен.
Однако в данном случае подразумевается другой калькулятор. Имеется в виду специальная программа по расчету эффективности теплоизоляции и утепления полиуретаном.
Сам по себе расчет можно изложить всего в нескольких формулах. Основные различия есть только в том, что каждый хозяин использует определенные материалы.
Так, стены могут быть выполнены из:
- Кирпича;
- Бетона;
- Легких блоков;
- Древесины и т.д.
Слой утеплителя в пустотелой стене из пеноизола
При этом каждый материал имеет свою теплопроводность и влияет на конструкции. Аналогичная ситуация проходит с утеплителем для стен. Строители часто прибегают к помощи:
То есть по сути, все что от нас требуется – заранее определить нужные значения и подставить их в формулу. Этим и занимается калькулятор. Будучи прописанной по текущим стандартам программой, он содержит в себе все необходимые для работы данные.
Вам же нужно только выбрать материал, вписать его параметры и получить ответ. У того же пенопласта теплопроводность немного отличается от минваты.
Калькулятор же примет все заданные свойства и через секунду выдаст вам результат. Причем результат будет максимально точным, ведь калькулятор не может ошибаться.
Такие программы существенно упрощают жизнь людям. Даже далекому от математических формул и строительства человеку справиться с ними будет достаточно легко.
к меню ↑
2 Процедура расчета
Использовать калькулятор – это конечно хорошо. Но не будем забывать и про личные качества. Все-таки знание и понимание процесса расчета даст нам намного больше сведений, чем бездумное забивание нескольких цифр в рабочую программку.
Да и к тому же рассчитывать утеплители очень просто. Вся процедура заключается в сравнении наличных параметров и свойств, которые необходимы для качественного утепления.
Сначала рассчитывают номинальное теплосопротивление стен. То есть те их теплоизоляционные свойства, которыми они обладают изначально.
Теплосопротивление на утепление стен минеральными плитами считают по формуле:
R=p/k, где
- R – непосредственно теплосопротивление;
- P – толщина слоя;
- k – коэффициент теплопроводности.
Однако показателей сопротивления будет несколько. Ведь стена может состоять не только из одного лишь кирпича или бетона. Снаружи ее могут отделать слоем в 3-4 см штукатурки, а изнутри нанесут еще несколько сантиметров шпаклевки. Все это надо рассчитать и сложить.
В итоге вы получите общий показатель сопротивления, что есть у ваших стен на данный момент. Затем вы сравните его с номинальными показателями по температурному региону.
Схематическое изображение теплоизоляционного пирога
Для этого загляните в справочник строительных норм. Под каждый регион в нем указывается показатель теплосопротивления, при котором стена эффективно удерживает тепло внутри дома. В большинстве случаев полученный показатель будет ниже номинального, и это нормально.
При несоответствии вам нужно отнять от номинального сопротивления реальное. Полученный результат и будет тем теплосопротивлением, которое необходимо будет нивелировать с помощью использования утеплителя.
к меню ↑
2.1 Расчет утеплителя
Итак, недостающие показатели получены. Что же делать дальше? А все очень просто. Действуем по той же схеме. Теперь у нас уже есть понимание того, сколько примерно тепла нужно компенсировать.
Также у нас есть показатели теплопроводности самих утеплительных материалов. Например, у пенопласта он находится 0,035 Вт/м. Данные берутся с таблиц.
Мы перемножаем показатели друг на друга, чтобы получить примерную рабочую толщину утеплителя. Если, например, 50 мм пенопласта не хватит, чтобы полностью компенсировать потери теплосопротивления, то нужно просто увеличить эту толщину и пересчитать ее еще раз.
В конце концов, вы придете к нормальному значению, что будет вас устраивать. Прелесть выполнения расчета в том, что вы сможете подобрать практически идеальный слой утеплителя и сэкономить на этом существенные деньги.
Вместо того чтобы по стандарту утеплять стены десятисантиметровыми пенополистирольными плитами или жидкими утеплителями для стен, можно задействовать несколько формул и определить, что в вашем случае, например, хватит и 7 см пенопласта. Так зачем платить больше?
Собственно, все калькуляторы расчета утеплителя работают по этим же формулам. Просто там все данные уже забиты в ядро программы. Это касается как табличных параметров, так и формул, а также порядка их просчета.
Человеку больше не нужно искать формулы, подставлять в них значения и мучиться с расчетами. Программа перебирает все эти функции на себя, при этом выполняя работу намного быстрее. Любой расчет такой калькулятор способен выполнить почти мгновенно, что тоже большой плюс.
к меню ↑
2.2 Пример расчета теплоизоляционных конструкций (видео)
Расчет теплопотерь дома: калькулятор онлайн теплотехнического расчета
На чтение 11 мин. Просмотров 3.1k. Обновлено
Для того, чтобы спроектировать систему отопления, которая удовлетворяла бы как требованиям комфортного проживания в доме, так и оптимального расходования ресурсов семьи, необходимо сначала рассчитать его возможные теплопотери.
Расчет теплопотерь — это способ, определить примерное количество теплопотерь, которое теряет дом через ограждающий контур за конкретное время, в самый холодный период пятидневки. Единица измерения теплопотерь — Ватты.
Полученный результат приблизительный, и требует экспериментальной проверки, так как не реально учесть все моменты, которые влияют на тепловые потери: неправильная конструкция перегородок, разница между температурой внутри и снаружи, действие осадков, солнечной радиации и ветра. Зная данные показатели, можно выбирать модель системы отопления нужной мощности для любого дома.
Калькулятор онлайн
Логика расчета
Процентное соотношение теплопотерь дома через элементы его конструкции, указанное на картинке, весьма приблизительно, поскольку сильно зависит от их устройства и используемых материалов. Потери тепла на инфильтрацию происходят в результате утечки воздуха через щели, некачественное уплотнение дверей и окон, принудительной и естественной вентиляции помещений. Уносимое с воздухом тепло приходится компенсировать более интенсивной работой системы отопления.
Расчет теплопотерь в данной программе выполняется отдельно для каждой стены, пола и потолка с учетом общих для всех элементов помещения условий. Это сделано исходя из следующих предположений:
- стены могут как непосредственно соприкасаться с атмосферным воздухом, так и выходить в нетапливаемое или плохо отапливаемые помещения;
- исходя из этого толщина стен и используемый для них материал могут отличаться;
- конструкция окон также может быть неодинакова.
Для расчета теплопотерь помещения в общем случае необходима площадь рассматриваемых элементов, характеристики теплопроводности или сопротивления теплопередаче используемых материалов и их толщина, а также разница между температурой воздуха внутри помещения (20-22 градуса) и температурой воздуха снаружи.
Температура атмосферного воздуха должна приниматься по самому холодному периоду отопительного сезона и указывается в общих условиях для расчета; если для какой-то стены она другая, введите ее в поле “температура воздуха снаружи помещения”. Для потолка температура, отличная от атмосферной, может быть введена в поле “температура над”, а для пола – “температура снизу”(вводится обязательно). Температура над потолком зависит от наличия или отсутствия утепления чердачного помещения; под полом – от наличия или отсутствия подвала и его типа (чаще всего принимается 0-7+ градусов).
Наружные двери могут выходить прямо на улицу или в неотапливаемое помещение; последнее обстоятельство учитывается в программе умножением рассчитанных теплопотерь через дверь на коэффициент 0.7.
Расчетные потери тепла на инфильтрацию воздуха можно регулировать варьируя значения, вводимые в поле “доля объема воздуха в помещении, подлежащая ежечасному обмену”; дело в том, что требуемый СНИПом ежечасный обмен всего объема воздуха, находящегося в доме, на практике считается завышенным и приводящим к большим затратам на отопление.
Коэффициенты теплопроводности используемых в строительстве материалов берутся из соответствующих таблиц или по данным изготовителей. Это касается и сопротивления теплопередачи стеклопакетов и им подобных конструкций. Что касается стеклопакетов, то при их выборе следует обращать внимание на обозначение.
Например, в обозначении стеклопакета 4-10ap-4: 4 -толщина стекла; 10-расстояние между стеклами; ap – указывает, что это пространство заполнено инертным газом аргоном, что повышает его сопротивление теплопередаче.
В обозначении 4-14-4-14-4и “и” указывает,что стекла имеют мягкое низко эмиссионное покрытие; к-стекло имеет более твердое покрытие, защищено от мелких повреждений, его покрытие низко эмиссионное; pi – на стекло нанесена энергосберегающая пленка и др.
Приведенная в правой части рисунка схема относится к случаю, когда под домом нет подвала (“пол на грунте”) для упрощения решения сложной задачи определения теплопотерь через пол в грунт применяется методика разбиения площади ограждающих конструкций на 4 зоны.
Каждая из четырех зон имеет свое фиксированное сопротивление теплопередаче в м2·°с/вт:r1=2,1 r2=4,3 r3=8,6 r4=14,2. Зона 1 представляет собой полосу (при отсутствии заглубления грунта под строением) шириной 2 метра, отмеренную от внутренней поверхности наружных стен вдоль всего периметра; зоны 2 и 3 имеют также ширину 2 метра и располагаются за зоной 1 ближе к центру здания; зона 4 занимает всю оставшуюся центральную площадь.
В действительности же зоны 3 и 4 при небольших размерах дома могут отсутствовать. В заключение следует указать, что в программе используются следующие общепринятые коэффициенты:
- 23 – коэфф. теплоотдачи от стен к наружному воздуху
- 8.7 – коэфф. теплоотдачи от внутреннего воздуха к стенам
- 6 – коэфф. теплоотдачи от внутреннего воздуха к полу
- 12 – коэфф. теплоотдачи от потолка к наружному воздуху если неотапливаемый чердак,
- 1.18 – поправочный коэфф. при расчете теплопотерь пола не на грунте (по снип).
А также доступные в калькуляторе коэфф. теплоотдачи от пола к наружному воздуху/грунту для различных видов подвалов. Необходимо также отметить,что по правилам обмера зданий для расчета теплопотерь длина стен определяется по его наружному периметру, а их высота – от поверхности чистового пола до верхней плоскости потолочного перекрытия. Эту величину следует указывать в поле “высота помещений hp”.
Общие замечания по порядку расчета
- Сначала рассчитываются теплопотери через двери, стены и окна, все сразу, то есть после ввода всех данных по ним, или по отдельности – после ввода параметров, например по одной из стен или двери; затем рассчитываются таким же образом теплопотери через потолок, пол и потери на инфильтрацию.
- Каждый элемент может быть пересчитанный повторно после корректировки его параметров; при этом следует учесть, что если вы изменяете количество слоев материалов, сами материалы, наличие или отсутствие окон, перед всеми этими действиями следует нажать кнопку “сброс входных данных”.
- Расчет теплопотерь через пол, потолок и инфильтрацию возможен только после расчета потерь через стены.
- “Температура воздуха снаружи” (для стен) и “температура над” (для потолка) вводятся в случае, если они отличаются от температуры, указанной в общих условиях для расчета.
- Перед расчетом теплопотерь через стены из их площади вычитается площадь окон и двери.
Значительно повышается экономия тепловой энергии при качественном утеплении контура дома и крыши. Необходимость в энергосберегающем ремонте возникает, когда в течение года тратится 100 кВт электрической энергии или 10 кубов природного газа, из расчёта на 1 кв. метр отапливаемой площади, с учётом перегородок.
Энергосберегающее здание — дом, имеющий сплошную теплоизоляцию по всему каркасу нагретой поверхности. В качестве теплоизолирующего материала отлично подходит пеностекло, фанера, пенопласт, гипсокартон. Металл (сталь), также является отличным проводником тепловой энергии. Приобретая стройматериалы, обязательно нужно обращать внимание на коэффициент теплопроводности, который указан в паспорте.
Варианты выхода нагретого воздуха:
- Крыша — толстый слой теплоизоляционного кровельного материала значительно уменьшит теплопотери.
К сведению: Если строение деревянное, то укладка теплозащиты на крыше затруднительна, так как происходит набухание древесины, и она может повредиться от влажности. - Стены — добиться снижения теплопотерь можно также используя специальное наружное покрытие. При утеплении изнутри, особенно если повышенная влажность, будет образовываться конденсат за изоляцией.
- Пол — в данном случае, практичнее делать утепление изнутри.
- Фундамент — его контакт с холодным грунтом значительно увеличивает теплопотерю на первом этаже.
- Термические мосты — наружные теплопроводники, не редко через них уходит большая часть нагретого воздуха. К ним относятся: бетонное половое покрытие, которое продолжается на балконе, дверные проёмы и окна, особенно классические, двойные. Есть также мосты, относящие к временным, когда перегородки крепятся на металлические элементы.
Современные окна — это стеклопакеты однокамерные и двухкамерные, имеющие специальную отражающую поверхность, что понижает потери излучения. Многослойное остекление более эффективно сохраняет тепло, чем обычное двойное окно.
Тепловые потери на вентиляциюОбычно, у дома есть воздушные утечки — это оконные и дверные проёмы, и крыша, что создаёт воздухообмен. Но в зимнее время, этот вариант приводит к значительному выходу тёплого воздуха, поэтому с помощью новых технологий были разработаны конструкции уменьшающие утечку нагретых воздушных масс наружу.
Современные дома нуждаются в постоянном вентилировании, так как они имеют высокую воздухонепроницаемость. Для уменьшения теплопотерь связанных с вентиляцией, которые составляют от 10 до 40%, используются новейшие модели вентиляционных систем. Калькулятор теплопотерь дома делается по каждой комнате отдельно, Далее, определяется тепловой расход на вентиляцию — его объём и сколько раз происходила его смена в здание.
Рассчитывая теплотехнические вентиляционные потери, при помощи онлайн калькулятора, нужно учитывать предназначение дома. Для ванной комнаты и кухни требуется повышенный уровень вентиляции.
Минимальное утепление наружных стенДля проведения онлайн теплотехнического расчёта для внешних стен существует несколько сложных методик, с учётом конвекционного обмена, излучения и т. д., но эти данные часто бывают излишними и не влияющими на итог.
Однако, есть более простой теплотехнический онлайн калькулятор для расчёта теплопотерь дома. Для большей точности, к данному показателю допустимо добавить 1 — 5%.
Важно! Применяя теплотехнический калькулятор, при расчёте потерь тепла дома, следует учитывать время пребывания человека в каждой комнате, чем оно меньше, тем за основу берутся меньшие температурные показания.
Есть два способа рассчитать расход тепла в доме:
- Метод усреднённых величин — получается приблизительный результат. Расчёт делается по специальной таблице, которая составлена для разных областей с учётом особенностей их климата и средних характеристик здания.
- Теплотехнический онлайн расчёт потерь тепла дома по периметру здания — площади всех внешних перегородок суммируются, и отнимается размер окон и дверей. Отдельно учитывается площадь крыши и пола, стройматериала и штукатурки. В дальнейшем калькулятор, для определения теплопотерь дома выглядит так: Q = S x ΔT/R, где S – размер полученной площади; ΔT – сведения о температурной разнице, внутри и снаружи; R – показатель сопротивления передачи тепла. R = n/λ;, где n – показатель толщины стен; λ – уровень удельной теплопроводности (Вт/м °C). Данное значение следует брать из таблицы, для необходимого стройматериала.
Материал | Коэффициент теплопроводимости | Толщина стен в мм |
Пенополистирол | 0,042 | 124 |
Минеральная вата | 0,046 | 135 |
Дерево, брус или бревно (сосна, ель, дуб) | 0,18 | 530 |
Керамические блоки уложенные на теплоизоляционный клей | 0,17 | 575 |
Керамический пустотный кирпич плотностью 1000 кг/м. кв.(Гост 530) уложенный на цементно-песчаный раствор | 0,52 | 1530 |
Силикатный кирпич на цементно-песчаном растворе | 0,87 | 2560 |
Железобетон | 2,04 | 602 |
Полученные результаты, отдельно рассчитанные для перегородок, полового покрытия и крыши, суммируются, прибавляются вентиляционные потери, и данные об утечке тепла через фундамент. В калькулятор теплотехнического расчёта для фундамента заносится меньшая температурная разница.
Данный метод поможет выбрать мощность котла, но не даёт возможность рассчитать необходимое количество радиаторов для каждой комнаты. Приблизительное минимальное качество утеплителя для стен снаружи в мм. выглядит так.
МАТЕРИАЛ | Высокое | Среднее | Низкое |
Слой из дерева плюс пенополистирол или слой каменной ваты | 300:100 | 300:50 | |
Дерево | 200 | ||
Газо и пенобетонный материал | 500 | 400 | 200 |
Газоблок и пенобетонный пласт плюс полистирол или каменная вата | 300:100 | 300:50 | |
Газовый и пенобетонный блок плюс кирпичная кладка | 100:120 | ||
Слой керамзитобетона плюс полистирол или пласт каменной ваты | 400:100 | 200:100 | |
Слой керамзитобетона | 300 | ||
Кирпичная кладка и полистирол или каменная вата | 250:200 | 250:100 | |
Силикатный кирпич | 250 |
Под точкой росы подразумевается температура воздуха, до которой он должен охладится, чтобы начать насыщаться и преобразовываться в росу. На данный показатель влияет давление воздуха.
Необходимо стараться избегать образования точки росы. Если это невозможно, следует сместить её к наружным пластам, кроме того требуется хорошая вентиляция этих слоёв.
Решение проблемы точки росыОсновная причина образования точки росы — это высокий уровень пустотелов во внутренних пластах, что приводит к повышению давления водяных паров в холодных слоях конструкции. Решить проблему можно путём добавления менее паронепроницаемого материала внутрь конструкции, или сделать вентиляционный зазора с наружной стороны.
Это позволит сдерживать водяные поры и не даст проходить им сквозь стены. Однако, если переусердствовать, то накопившиеся пары понизят качество воздуха внутри дома. Если здание эксплуатируется в суровых условиях (-20 и выше градусов), то следует сделать принудительное поступление прогретого воздуха в дом, используя теплообменники или нагреватели. В этом случае применение герметичных строительных пароизоляционных материалов не приведёт к ухудшению микроклимата в помещение. Использование онлайн расчёта облегчит процесс определения размера теплопотерь.
Онлайн калькулятор расчёта теплопотерь даёт возможность узнать коэффициент теплопроводимости стен дома или отдельного помещения, и правильно выбрать материал для простой или многослойной теплоизоляции. Кроме того, точность результата важна для при выборе бойлера, для выделения эффективного тепла без перегрева дома.
Архитектура. Бытовая техника. Канализация. Лестницы. Мебель. Окна. Отопление. Ремонт. Строительство
Даже популярные ныне коттеджи из бревна или профилированного бруса необходимо утеплять дополнительно или возводить их из практически несуществующего на рынке деревянного массива толщиной в 35-40 см. Что уж говорить о каменных строениях (блочных, кирпичных, монолитных).
Что значит «утеплиться правильно»
Итак, без теплоизоляционных слоёв обойтись нельзя, с этим согласится подавляющее большинства домовладельцев. Некоторым из них приходится изучать вопрос во время строительства собственного гнёздышка, другие озадачиваются утеплением, чтобы фасадными работами улучшить уже эксплуатируемый коттедж. В любом случае подходить к вопросу необходимо очень скрупулёзно.
Одно дело соблюдение технологии утепления, но ведь часто застройщики допускают ошибки на стадии закупки материала, в частности неправильно выбирают толщину утепляющего слоя. Если жилище окажется слишком холодным, то находиться в нём будет, мягко говоря, некомфортно. При благоприятном стечении обстоятельств (наличие запаса производительности теплогенератора) проблему получится решить увеличением мощности отопительной системы, что, однозначно, влечёт за собой существенный рост расходов на покупку энергоносителей.
Но обычно всё заканчивается куда печальнее: при малой толщине утепляющего слоя ограждающие конструкции промерзают. А это становится причиной перемещения точки росы вовнутрь помещений, из-за чего на внутренних поверхностях стен и перекрытий выпадает конденсат. Потом появляется плесень, разрушаются строительные конструкции и отделочные материалы… Что самое неприятное, так это тот факт, что невозможно устранить неприятности малой кровью. Например, на фасаде придётся демонтировать (или «похоронить») финишный слой, затем создать ещё один барьер из утеплителя, а потом снова отделать стены. Очень недёшево выходит, лучше сразу всё сделать как положено.
Важно! Технологичные современные утеплители мало стоить не будут, причём с увеличением толщины пропорционально будет расти и цена. Поэтому создавать слишком большой запас по теплоизоляции обычно смысла нет, это — пустая трата средств, особенно если случайному сверхутеплению подвергается только часть конструкций дома.
Принципы расчёта утепляющего слоя
Теплопроводность и термическое сопротивление
Прежде всего, нужно определиться с главной причиной охлаждения здания. Зимой у нас работает система отопления, которая греет воздух, но сгенерированное тепло проходит через ограждающие конструкции и рассеивается в атмосфере. То есть происходят теплопотери — «теплопередача». Она есть всегда, вопрос лишь в том, получается ли их восполнить посредством отопления, чтобы в доме оставалась стабильная положительная температура, желательно на уровне + 20-22 градусов.
Важно! Заметим, что очень немаловажную роль в динамике теплового баланса (в общих теплопотерях) играют различные неплотности в элементах здания — инфильтрация. Поэтому на герметичность и сквозняки тоже следует обращать внимание.
Кирпич, сталь, бетон, стекло, деревянный брус… — каждый материал, применяемый при строительстве зданий, в той или иной мере обладает способностью передавать тепловую энергию. И каждый из них обладает обратной способностью — сопротивляться теплопередаче. Теплопроводность является величиной неизменной, поэтому в системе СИ существует показатель «коэффициент теплопроводности» для каждого материала. Данные эти важны не только для понимания физических свойств конструкций, но и для последующих расчётов.
Приведём данные для некоторых основных материалов в виде таблицы.
Теперь о сопротивлении теплопередаче. Значение сопротивления теплопередаче обратно пропорционально теплопроводности. Этот показатель относится и к ограждающим конструкциям, и к материалам как таковым. Он используется для того, чтобы охарактеризовать теплоизоляционные характеристики стен, перекрытий, окон, дверей, кровли…
Для расчёта термического сопротивления используют следующую общедоступную формулу:
Показатель «d» здесь означает толщину слоя, а показатель «k» — теплопроводность материала. Получается, что сопротивление теплопередаче напрямую зависит от массивности материалов и ограждающих конструкций, что при использовании нескольких таблиц поможет нам рассчитать фактическое теплосопротивление существующей стены или правильный утеплитель по толщине.
Для примера: стена в половину кирпича (полнотелого) имеет толщину 120 мм, то есть показатель R получится 0,17 м²·K/Вт (толщина 0,12 метра, разделённая на 0,7 Вт/(м*К)). Аналогичная кладка в кирпич (250 мм) покажет 0,36 м²·K/Вт, а в два кирпича (510 мм) — 0,72 м²·K/Вт.
Допустим, по минеральной вате толщиной 50; 100; 150 мм показатели термического сопротивления будут следующие: 1,11; 2,22; 3,33 м²·K/Вт.
Важно! Большинство ограждающих конструкций в современных зданиях являются многослойными. Поэтому, чтобы рассчитать, например, термическое сопротивление такой стены, нужно отдельно рассматривать все её прослойки, а затем полученные показатели суммировать.
Существуют ли требования к тепловому сопротивлению
Возникает вопрос: а каким, собственно, должен быть показатель сопротивления теплопередачи для ограждающих конструкций в доме, чтобы в помещениях было тепло, и в отопительный период расходовалось минимум энергоносителей? К счастью для домовладельцев, не обязательно снова использовать сложные формулы. Вся необходимая информация есть в СНиП 23-02-2003 «Тепловая защита зданий». В данном нормативном документе рассматриваются строения различного назначения, эксплуатируемые в различных климатических зонах. Это вполне объяснимо, так как температура для жилых помещений и производственных помещений не нужна одинаковая. Кроме того, отдельные регионы характеризуются своими предельными минусовыми температурами и длительность отопительного периода, поэтому выделяют такую усреднённую характеристику, как градусо-сутки отопительного сезона.
Важно! Ещё один интересный момент заключается в том, что основная интересующая нас таблица содержит нормируемые показатели для различных ограждающих конструкций. Это в общем-то не удивительно, ведь тепло покидает дом неравномерно.
Попробуем немного упростить таблицу по необходимому тепловому сопротивлению, вот что получится для жилых зданий (м²·K/Вт):
Согласно данной таблице, становится понятно, что если в Москве (5800 градусо-суток при средней температуре в помещениях порядка 24 градусов) строить дом только из полнотелого кирпича, то стену придётся делать по толщине более 2,4 метра (3,5 Х 0,7). Реально ли это технически и по деньгам? Конечно — абсурд. Вот почему нужно применить утепляющий материал.
Очевидно, что для коттеджа в Москве, Краснодаре и Хабаровске будут предъявляться разные требования. Всё, что нам нужно, так это определить градусо-суточные показатели для нашего населённого пункта и выбрать подходящее число из таблицы. Потом применяя формулу сопротивления теплопередаче, работаем с уравнением и получаем оптимальную толщину утеплителя, который необходимо применить.
Город | Градусо-сутки Dd отопительного периода при температуре, + С | |||||
24 | 22 | 20 | 18 | 16 | 14 | |
Абакан | 7300 | 6800 | 6400 | 5900 | 5500 | 5000 |
Анадырь | 10700 | 10100 | 9500 | 8900 | 8200 | 7600 |
Арзанас | 6200 | 5800 | 5300 | 4900 | 4500 | 4000 |
Архангельск | 7200 | 6700 | 6200 | 5700 | 5200 | 4700 |
Астрахань | 4200 | 3900 | 3500 | 3200 | 2900 | 2500 |
Ачинск | 7500 | 7000 | 6500 | 6100 | 5600 | 5100 |
Белгород | 4900 | 4600 | 4200 | 3800 | 3400 | 3000 |
Березово (ХМАО) | 9000 | 8500 | 7900 | 7400 | 6900 | 6300 |
Бийск | 7100 | 6600 | 6200 | 5700 | 5300 | 4800 |
Биробиджан | 7500 | 7100 | 6700 | 6200 | 5800 | 5300 |
Благовещенск | 7500 | 7100 | 6700 | 6200 | 5800 | 5400 |
Братск | 8100 | 7600 | 7100 | 6600 | 6100 | 5600 |
Брянск | 5400 | 5000 | 4600 | 4200 | 3800 | 3300 |
Верхоянск | 13400 | 12900 | 12300 | 11700 | 11200 | 10600 |
Владивосток | 5500 | 5100 | 4700 | 4300 | 3900 | 3500 |
Владикавказ | 4100 | 3800 | 3400 | 3100 | 2700 | 2400 |
Владимир | 5900 | 5400 | 5000 | 4600 | 4200 | 3700 |
Комсомольск-на-Амуре | 7800 | 7300 | 6900 | 6400 | 6000 | 5500 |
Кострома | 6200 | 5800 | 5300 | 4900 | 4400 | 4000 |
Котлас | 6900 | 6500 | 6000 | 5500 | 5000 | 4600 |
Краснодар | 3300 | 3000 | 2700 | 2400 | 2100 | 1800 |
Красноярск | 7300 | 6800 | 6300 | 5900 | 5400 | 4900 |
Курган | 6800 | 6400 | 6000 | 5600 | 5100 | 4700 |
Курск | 5200 | 4800 | 4400 | 4000 | 3600 | 3200 |
Кызыл | 8800 | 8300 | 7900 | 7400 | 7000 | 6500 |
Липецк | 5500 | 5100 | 4700 | 4300 | 3900 | 3500 |
Санкт Петербург | 5700 | 5200 | 4800 | 4400 | 3900 | 3500 |
Смоленск | 5700 | 5200 | 4800 | 4400 | 4000 | 3500 |
Магадан | 9000 | 8400 | 7800 | 7200 | 6700 | 6100 |
Махачкала | 3200 | 2900 | 2600 | 2300 | 2000 | 1700 |
Минусинск | 4700 | 6900 | 6500 | 6000 | 5600 | 5100 |
Москва | 5800 | 5400 | 4900 | 4500 | 4100 | 3700 |
Мурманск | 7500 | 6900 | 6400 | 5800 | 5300 | 4700 |
Муром | 6000 | 5600 | 5100 | 4700 | 4300 | 3900 |
Нальчик | 3900 | 3600 | 3300 | 2900 | 2600 | 2300 |
Нижний Новгород | 6000 | 5300 | 5200 | 4800 | 4300 | 3900 |
Нарьян-Мар | 9000 | 8500 | 7900 | 7300 | 6700 | 6100 |
Великий Новгород | 5800 | 5400 | 4900 | 4500 | 4000 | 3600 |
Олонец | 6300 | 5900 | 5400 | 4900 | 4500 | 4000 |
Омск | 7200 | 6700 | 6300 | 5800 | 5400 | 5000 |
Орел | 5500 | 5100 | 4700 | 4200 | 3800 | 3400 |
Оренбург | 6100 | 5700 | 5300 | 4900 | 4500 | 4100 |
Новосибирск | 7500 | 7100 | 6600 | 6100 | 5700 | 5200 |
Партизанск | 5600 | 5200 | 4900 | 4500 | 4100 | 3700 |
Пенза | 5900 | 5500 | 5100 | 4700 | 4200 | 3800 |
Пермь | 6800 | 6400 | 5900 | 5500 | 5000 | 4600 |
Петрозаводск | 6500 | 6000 | 5500 | 5100 | 4600 | 4100 |
Петропавловск-Камчатский | 6600 | 6100 | 5600 | 5100 | 4600 | 4000 |
Псков | 5400 | 5000 | 4600 | 4200 | 3700 | 3300 |
Рязань | 5700 | 5300 | 4900 | 4500 | 4100 | 3600 |
Самара | 5900 | 5500 | 5100 | 4700 | 4300 | 3900 |
Саранск | 6000 | 5500 | 5100 | 5700 | 4300 | 3900 |
Саратов | 5600 | 5200 | 4800 | 4400 | 4000 | 3600 |
Сортавала | 6300 | 5800 | 5400 | 4900 | 4400 | 3900 |
Сочи | 1600 | 1400 | 1250 | 1100 | 900 | 700 |
Сургут | 8700 | 8200 | 7700 | 7200 | 6700 | 6100 |
Ставрополь | 3900 | 3500 | 3200 | 2900 | 2500 | 2200 |
Сыктывкар | 7300 | 6800 | 6300 | 5800 | 5300 | 4900 |
Тайшет | 7800 | 7300 | 6800 | 6300 | 5800 | 5400 |
Тамбов | 5600 | 5200 | 4800 | 4400 | 4000 | 3600 |
Тверь | 5900 | 5400 | 5000 | 4600 | 4100 | 3700 |
Тихвин | 6100 | 5600 | 2500 | 4700 | 4300 | 3800 |
Тобольск | 7500 | 7000 | 6500 | 6100 | 5600 | 5100 |
Томск | 7600 | 7200 | 6700 | 6200 | 5800 | 5300 |
Тотьна | 6700 | 6200 | 5800 | 5300 | 4800 | 4300 |
Тула | 5600 | 5200 | 4800 | 4400 | 3900 | 3500 |
Тюмень | 7000 | 6600 | 6100 | 5700 | 5200 | 4800 |
Улан-Удэ | 8200 | 7700 | 7200 | 6700 | 6300 | 5800 |
Ульяновск | 6200 | 5800 | 5400 | 5000 | 4500 | 4100 |
Уренгой | 10600 | 10000 | 9500 | 8900 | 8300 | 7800 |
Уфа | 6400 | 5900 | 5500 | 5100 | 4700 | 4200 |
Ухта | 7900 | 7400 | 6900 | 6400 | 5800 | 5300 |
Хабаровск | 7000 | 6600 | 6200 | 5800 | 5300 | 4900 |
Ханты-Мансийск | 8200 | 7700 | 7200 | 6700 | 6200 | 5700 |
Чебоксары | 6300 | 5800 | 5400 | 5000 | 4500 | 4100 |
Челябинск | 6600 | 6200 | 5800 | 5300 | 4900 | 4500 |
Черкесск | 4000 | 3600 | 3300 | 2900 | 2600 | 2300 |
Чита | 8600 | 8100 | 7600 | 7100 | 6600 | 6100 |
Элиста | 4400 | 4000 | 3700 | 3300 | 3000 | 2600 |
Южно-Курильск | 5400 | 5000 | 4500 | 4100 | 3600 | 3200 |
Южно-Сахалинск | 6500 | 600 | 5600 | 5100 | 4700 | 4200 |
Якутск | 11400 | 10900 | 10400 | 9900 | 9400 | 8900 |
Ярославль | 6200 | 5700 | 5300 | 4900 | 4400 | 4000 |
Примеры расчёта толщины утеплителя
Предлагаем на практике рассмотреть процесс расчётов утепляющего слоя стены и потолка жилой мансарды. Для примера возьмём дом в Вологде, построенный из блоков (пенобетон) толщиной 200 мм.
Итак, если температура в 22 градуса для обитателей будет нормальной, то актуальный в данном случае показатель градусо-суток равняется 6000. Находим в таблице нормативов по термическому сопротивлению соответствующий показатель, он составляет 3,5 м²·K/Вт — к нему будем стремиться.
Стена получится многослойная, поэтому сначала определим, сколько термического сопротивления даст голый пеноблок. Если средняя теплопроводность пенобетона составляет порядка 0,4 Вт/(м*К), то при 20-миллиметровой толщине эта наружная стена даст сопротивление теплопередаче на уровне 0,5 м²·K/Вт (0,2 метра делим на коэффициент теплопроводности 0,4).
То есть для качественного утепления нам не хватает порядка 3 м²·K/Вт. Их можно получить минеральной ватой или пенопластом, который будут установлены со стороны фасада в вентилируемой навесной конструкции или мокрым способом скреплённой теплоизоляции. Чуть трансформируем формулу термического сопротивления и получаем необходимую толщину — то есть умножаем необходимое (недостающее) сопротивление теплопередачи на теплопроводность (берём из таблицы).
В цифрах это будет выглядеть так: d толщина базальтовой минваты = 3 Х 0,035 = 0,105 метра. Получается, что мы может использовать материал в матах или рулонах толщиной 10 сантиметров. Заметим, что при использовании пенопласта плотностью 25 кг/м3 и выше — необходимая толщина получится аналогичной.
Кстати, можно рассмотреть другой пример. Допустим, хотим из полнотелого силикатного кирпича в этом же доме сделать ограждение тёплого остеклённого балкона, тогда недостающего термического сопротивления будет порядка 3,35 м²·K/Вт (0,12Х0,82). Если планируется применять для утепления пенопласт ПСБ-С-15, то его толщина должна быть 0,144 мм — то есть 15 см.
Для мансарды, крыши и перекрытий техника расчётов будет примерно такая же, только отсюда исключается теплопроводность и сопротивление теплопередачи несущих конструкций. А также несколько увеличиваются требования по сопротивлению — потребуется уже не 3,5 м²·K/Вт, а 4,6. В итоге, вата подойдёт толщиной до 20 см = 4,6 Х 0,04 (теплоизолятор для кровли).
Применение калькуляторов
Производители изоляционных материалов решили упростить задачу рядовым застройщикам. Для этого они разработали простые и понятные программки для расчёта толщины утеплителя.
Рассмотрим некоторые варианты:
В каждом из них в несколько шагов нужно заполнить поля, после чего, нажав на кнопку, можно мгновенно получить результат.
Вот некоторые особенности использования программ:
1. Везде предлагается из выпадающего списка выбрать город/район/регион строительства.
2. Все, кроме Технониколь, просят определить тип объекта: жилое/производственное, либо, как на сайте Пеноплекс — городская квартира/лоджия/малоэтажный дом/хозпостройка.
3. Потом указываем, какие конструкции нас интересуют: стены, полы, перекрытие чердака, крыша. Программа Пеноплекс рассчитывает также утепление фундамента, инженерных коммуникаций, уличных дорожек и площадок.
4. Некоторые калькуляторы имеют поле для указания желаемой температуры внутри помещения, на сайте Rockwool интересуются также габаритами здания и типом применяемого для отопления топлива, количеством проживающих людей. Кнауф ещё учитывает относительную влажность воздуха в помещениях.
5. На penoplex.ru нужно указать тип и толщину стен, а также материал, из которого они изготовлены.
6. В большинстве калькуляторов есть возможность задать характеристики отдельных или дополнительных слоёв конструкций, например, особенности несущих стен без теплоизоляции, тип облицовки…
7. Калькулятор пеноплекс для некоторых конструкций (допустим для утепления кровли методом «между стропил») может считать не только экструдированный пенополистирол, на котором фирма специализируется, но также минеральную вату.
Как вы понимаете, в том, чтобы рассчитать оптимальную толщину теплоизоляции — ничего сложного нет, следует только со всей тщательностью подойти к данному вопросу. Главное, чётко определиться с недостающим сопротивлением теплопередаче, а потом уже выбирать утеплитель, который будет лучше всего подходить для конкретных элементов здания и применяемых строительных технологий. Также не стоит забывать, что к теплоизоляцией частного дома необходимо заниматься комплексно, в должной степени должны быть утеплены все ограждающие конструкции.
Теплый дом — мечта каждого владельца, для достижения этой цели строятся толстые стены, проводится отопление, устраивается качественная теплоизоляция. Чтобы утепление было рациональным необходимо правильно подобрать материал и грамотно рассчитать его толщину.
Размер слоя изоляции зависит от теплового сопротивления материала. Этот показатель является величиной, обратной теплопроводности. Каждый материал — дерево, металл, кирпич, пенопласт или минвата обладают определенной способностью передавать тепловую энергию. Коэффициент теплопроводности высчитывается в ходе лабораторных испытаний, а для потребителей указывается на упаковке.
Если материал приобретается без маркировки, можно найти сводную таблицу показателей в интернете.
Теплосопротивление материала ® является постоянной величиной, его определяют как отношение разности температур на краях утеплителя к силе проходящего через материал теплового протока. Формула расчета коэффициента: R=d/k, где d — толщина материала, k — теплопроводность. Чем выше полученное значение, тем эффективней теплоизоляция.
Почему важно правильно рассчитать показатели утепления?
Теплоизоляция устанавливается для сокращения потерь энергии через стены, пол и крышу дома. Недостаточная толщина утеплителя приведет к перемещению точки росы внутрь здания. Это означает появление конденсата, сырости и грибка на стенах дома. Избыточный слой теплоизоляции не дает существенного изменения температурных показателей, но требует значительных финансовых затрат, поэтому является нерациональным. При этом нарушается циркуляция воздуха и естественная вентиляция между комнатами дома и атмосферой. Для экономии средств с одновременным обеспечением оптимальных условий проживания требуется точный расчет толщины утеплителя.
Расчет теплоизоляционного слоя: формулы и примеры
Чтобы иметь возможность точно рассчитать величину утепления, необходимо найти коэффициент сопротивления теплопередачи всех материалов стены или другого участка дома. Он зависит от климатических показателей местности, поэтому вычисляется индивидуально по формуле:
ГСОП=(tв-tот)xzот
tв — показатель температуры внутри помещения, обычно составляет 18-22ºC;
tот — значение средней температуры;
zот — длительность отопительного сезона, сутки.
Значения для подсчета можно найти в СНиП 23-01-99.
При вычислении теплового сопротивления конструкции, необходимо сложить показатели каждого слоя: R=R1+R2+R3 и т. д. Исходя из средних показателей для частных и многоэтажных домов определены примерные значения коэффициентов:
- стены — не менее 3,5;
- потолок — от 6.
Толщина утеплителя зависит от материала постройки и его величины, чем меньше теплосопротивление стены или кровли, тем больше должен быть слой изоляции.
Пример: стена из силикатного кирпича толщиной в 0,5 м, которая утепляется пенопластом.
Rст.=0,5/0,7=0,71 — тепловое сопротивление стены
R- Rст.=3,5-0,71=2,79 — величина для пенопласта
Для пенопласта теплопроводность k=0,038
d=2,79×0,038=0,10 м — потребуются плиты пенопласта толщиной в 10 см
По такому алгоритму легко подсчитать оптимальную величину теплоизоляции для всех участков дома, кроме пола. При вычислениях, касающихся утеплителя основания, необходимо обратиться к таблице температуры грунта в регионе проживания. Именно из нее берутся данные для вычисления ГСОП, а далее ведется подсчет сопротивления каждого слоя и искомая величина утеплителя.
Популярные способы утепления дома
Выполнить теплоизоляцию здания можно на этапе возведения или после его окончания. Среди популярных методов:
- Монолитная стена существенной толщины (не менее 40 см) из керамического кирпича или дерева.
- Возведение ограждающих конструкций путем колодезной кладки — создание полости для утеплителя между двумя частями стены.
- Монтаж наружной теплоизоляции в виде многослойной конструкции из утеплителя, обрешетки, влагозащитной пленки и декоративной отделки.
По готовым формулам произвести расчет оптимальной толщины утеплителя можно без помощи специалиста. При вычислении следует округлять число в большую сторону, небольшой запас величины слоя теплоизолятора будет полезен при временных падениях температуры ниже среднего показателя.
Деревянные дома, наверняка, никогда не потеряют своей актуальности и не уйдут с пика популярности. Теплая, приятная, полезная для здоровья человека структура качественной древесины не идет ни в какое сравнение ни с камнем, ни со строительными растворами, ни тем более, с какими бы то ни было полимерами. Тем не менее термоизоляционных качеств дерева, хотя и достаточно высоких, все же бывает недостаточно, чтобы обеспечить в доме максимально комфортабельный микроклимат, и приходится прибегать к дополнительному утеплению стен.
Утепление деревянных стен – дело весьма деликатное, так как необходимо обеспечить достаточность слоя термоизоляции, но при этом не допустить чрезмерности. Кроме того, многое зависит и от типа внешней и внутренней отделки стен, если она предусматривается. Одним словом, без проведения теплотехнических вычислений – не обойтись. А в этом вопросе добрую службу должен сослужить калькулятор расчета утепления стен деревянного дома.
В настоящее время в сети имеется немало бесплатных онлайн калькулятор и сервисов, позволяющих выполнить достаточно точные расчеты строительных конструкций.
В данном обзоре вы найдете подборку расчетных программ, используя которые вы сможете быстро выполнить расчеты по теплоизоляции, огнезащиты, звукоизоляции, технической изоляции, кровли, каменным конструкциям и сэндвич-панелям.
Содержание:
5. Калькулятор для расчета каменных конструкций
1. Калькуляторы для расчета теплоизоляции, звукоизоляции, огнезащитыРасчет толщины теплоизоляции является одним из важнейших факторов, необходимым при проектировании строительных объектов. Одним из главных параметров здесь считают теплосопротивление, которое высчитывается, исходя из климатической зоны того или иного региона, а так же вида ограждающих конструкций. Также необходимо учесть и другие важные детали, сделать это вам поможет специальная программа расчета теплоизоляции.
1.1. Онлайн-калькулятор теплоизоляции http://tutteplo.ru/138/ рассчитывает толщину слоя утеплителя для зданий и сооружений согласно требованиям СНИП 23-02-2003. Тепловая защита зданий. В создании калькулятора для расчета толщины теплоизоляции принимали участие сотрудники ОАО Институт «УралНИИАС». В качестве исходных данных требуется указать тип здания (жилое, общественное или производственное), район строительства, выбрать ограждающие конструкции, подлежащие термоизоляции, их характеристики. В качестве применяемого утеплителя доступен широкий выбор популярных марок, таких как Rockwool, Paroc, Isover, Термоплекс и множество других.
На основании теплотехнического расчета программа определяет толщину изоляции. При необходимости администрация сайта предоставляет бесплатные онлайн-консультации для проектировщиков и специалистов, а также на e-mail по запросу могут быть высланы детальные расчетные материалы.
1.2. Теплотехнический калькулятор http://www.smartcalc.ru/
Детальный теплотехнический расчет ограждающих конструкций онлайн можно выполнить в этой программе. Для начала работы сервис просит ввести данные о типе конструкций, районе строительства и температурном режиме помещения. Далее, калькулятор обрабатывает информацию и выдает решение о соответствии ограждающих конструкций требованиям нормативной документации.
В возможности программы входит построение схем тепловой защиты, влагонакопления и теплопотерь. Для удобства в меню есть примеры готовых решений, ознакомившись с которыми, выполнить расчет самостоятельно не составит труда.
1.4 Калькуляторы Технониколь
С помощью онлайн сервиса Технониколь http://www.tn.ru/about/o_tehnonikol/servisy/programmy_rascheta/ можно рассчитать:
- толщину звукоизоляции;
- расход материалов для огнезащиты металлоконструкций;
- тип и количество материалов для плоской кровли;
- техническую изоляцию трубопроводов.
Для примера рассмотрим калькулятор, который позволит выполнить расчет плоской кровли http://www.tn.ru/calc/flat/ . В начале расчета предлагается выбрать тип покрытия Технониколь (Классик, Смарт, Соло и т.д.) С подробным описанием всех видов можно ознакомиться на этом же сайте в соответствующем разделе.
Следующим этапом вводятся параметры кровельного пирога, географическое местоположение объекта и геометрические размеры конструкций крыши. Результаты расчета плоской кровли онлайн программа предоставляет в формате Adobe Acrobat или Microsoft Excel. Отчетный документ оформляется на фирменном бланке компании и содержит два вида показателей: по укрупненной и детализированной формам. Полученные спецификации могут использоваться непосредственно для закупки материала.
Еще Технониколь предлагает воспользоваться калькулятором расчета звукоизоляции http://www.tn.ru/calc/noise_insulation/ , в котором доступно два режима — для застройщика и проектировщика. Программа расчета звукоизоляциидает возможность выбора конструкции (стена, перекрытие), типа помещения, источника шума и других параметров. Далее, пользователь может выбрать одну из нескольких изоляционных систем, подходящих под его вводные данные.
Расчет огнезащиты металлоконструкцийтакже можно осуществить при помощи интернет-программы http://www.tn.ru/calc/fire_protection/ . Он позволяет выбрать геометрию конструкции (двутавр, швеллер, уголок, прямоугольная или круглая труба), ее параметры по ГОСТу или размеры для сварной конструкции, а потом указать способ обогрева и степень огнестойкости. После этого, система выполнит расчет толщины огнезащиты и предоставит результаты — необходимую толщину и объем плит, а также расходных материалов.
1.5 Теплотехнический калькулятор Paroc
Известный финский производитель теплоизоляционных материалов Paroc на своем российском сайте предлагает выполнить расчет всех видов утеплителей http://calculator.paroc.ru/ в соответствии с требованиями СП 50.13330.2015 «Тепловая защита зданий».
Для этого необходимо указать конструкцию стены, покрытия или перекрытия здания, уточнить температурные режимы и географию расположения объекта. В результате программа выполнит расчет сопротивления строительных конструкций теплопередаче и определит минимально допустимую толщину утеплителя. Отчет о проделанной работе можно распечатать или сохранить в файле формата PDF.
1.6. Теплоизоляция Baswool
Отечественная компания ООО «Агидель», выпускающая популярные теплоизоляционные материалы Baswool предлагает для своей продукции бесплатный калькулятор http://www.baswool.ru/calc.html . Интерфейс ресурса очень простой, а расчет предлагается выполнить в несколько шагов, поэтапно указав город строительства, категорию здания, утепляемую конструкцию. В результате программа предоставит на выбор несколько вариантов систем утепления Baswool с указанием толщины материала.
1.7. Расчетные программы Основит
Один из лидеров отечественных производителей отделочных материалов ТМ «Основит» предлагает на своем сайте бесплатно рассчитать объемы работ и стоимость их выполнения. С помощью калькулятора Основит http://osnovit.ru/system-calc/calc.php можно определить параметры фасадной теплоизоляции. Введя стандартный набор исходных данных, пользователь получает итоговую спецификацию предлагаемого набора материалов для устройства теплого фасада.
Дополнительно сервис Основит позволяет определить расход любого материала из своей производственной линейки . Преимуществом такого расчета является то, что результаты выдаются с привязкой к фасовочным единицам товара. Например, выбрав в меню категорий продукции «Смеси для пола» стяжку Стартлайн FC41 Н, указав толщину ее нанесения и общую площадь поверхности, пользователь узнает, сколько мешков сухой смеси ему потребуется.
2. Расчет технической изоляции2.1. Калькулятор расчета технической изоляции от Isotec
Isotec–торговая марка известной международной компании«Сен Гобен», под которой выпускается линейка технической изоляции. Эти материалы применяются для противопожарной обработки строительных конструкций, термической изоляции трубопроводов отопления и кондиционирования, а также промышленных емкостных сооружений.
Сайт компании предлагает выполнить расчет тепловых характеристик системы при помощи бесплатной онлайн-программы http://calculator.isotecti.ru/ . Калькулятор работает в соответствии с регламентом СП 61.13330.2012 (тепловая изоляция для оборудования и трубопроводов). Расчет выполняется на основании заданных критериев: температура поверхности трубопровода, транспортируемого потока, разница температурных характеристик по длине и так далее. Требуемые условия задаются пользователем в меню сайта.
После этого необходимо выбрать один из предлагаемых вариантов устройства теплоизоляции Isotec (например, цилиндры для трубопроводов). Программа автоматически определит толщину материала.
2. 2. Таким же образом можно произвести и расчет теплоизоляции трубопроводов с помощью уже знакомого сервиса Paroc http://calculator.paroc.ru/new/ . Все расчеты выполняются в соответствии с СП 61.13330.2012 Тепловая изоляция оборудования и трубопроводов (актуализированная редакция СНиП 41-03-2003). С его помощью можно подобрать оптимальные характеристики и тип технической изоляции. Система включает в себя различные методы расчета — по плотности теплового потока, его температуре, для предотвращения замерзания жидкости и т. д. Чтобы произвести расчет толщины теплоизоляции трубопроводов, нужно выбрать метод, ввести необходимые данные (диаметр, материал, толщина трубопровода и т.д.), после чего программа сразу же выдаст готовый результат. При этом, учитываются различные важные факторы — температура содержимого трубопровода, окружающей среды, величина механической нагрузки на трубопровод и другие. В результате, калькулятор расчета теплоизоляции трубопроводов определит толщину и объем утеплителя.
3. Расчет кровлиРасчет материалов кровли онлайн можно выполнить на специализированном ресурсе металлочерепицы http://www.metalloprof.ru/calc/ . Для этого необходимо выбрать форму крыши, указать ее основные размеры и определить тип кровельного материала. Программа выдаст расход металлочерепицы, количество коньков, карнизов и крепежных элементов. В результате будет высчитана стоимость материала в соответствии с актуальным прайс-листом поставщика.
4. Калькулятор для расчета сэндвич- панелей
Если вам необходимо рассчитать сэндвич панели, требуемые для строительства определенного здания, то сделать это также можно онлайн, при помощи бесплатных калькуляторов. Вполне удобным и эффективным считается сервис Теплант, который предлагает пользователю функцию онлайн-калькулятора для примерного расчета размеров сэндвич панелей http://teplant.ru/calculate/ и других параметров (количество панелей и прочих элементов, расходных материалов). Это универсальный сервис, при помощи которого вы легко сможете рассчитать как стеновые сэндвич панели , так и кровельные сэндвич панели . Для расчета необходимо указать тип кровли здания, его габариты, выбрать цвет панелей и их вид (стеновые, кровельные).
Программа определит количество материала, крепежных и фасонных элементов, а также рассчитает их стоимость.
5. Калькулятор расчета каменных конструкций5.1. Расчет газобетона
Что же касается такого популярного направления, как расчет газобетона онлайн, то для этой операции вы найдете немало подходящих сервисов в сети Интернет. К примеру, это онлайн-калькулятор газобетона http://stroy-calc.ru/raschet-gazoblokov , при помощи которого можно легко рассчитать количество газобетонных или газосиликатных блоков, необходимых для строительства объекта. При этом, учитываются все необходимые параметры — длина, ширина, плотность, высота и т. д, позволяя быстро вычислить расчет газобетона на дом. Аналогичный сервис можно найти и на многих других сайтах производителей стройматериалов. Например, калькулятор расчета газобетона от компании Bonolit предоставит вам целый перечень результатов — количество блоков в единицах и м3 и даже количество мешков клея.
Компания Bonolit, специализирующаяся на производстве автоклавного аэрированного бетона (газобетон) для удобства клиентов предоставляет бесплатный сервис по определению объема работ при кладке стен дома. Расчетная программа доступна по адресу : http://www.bonolit.ru/raschet-gazobetona/
В качестве исходных данных калькулятор запрашивает габариты дома, длину внутренних несущих стен, этажность, тип перекрытий, размеры и количество проемов. Результат вычислений предоставляется в виде спецификации материалов и их сметной стоимости. При этом имеется возможность тут же отправить заказ на закупку газобетона.
5.2. Расчет для стен из кирпича
Онлайн-сервис Stroy Calc http://stroy-calc.ru/raschet-kirpicha/ осуществляет расчет стройматериалов для кладки стен дома. Параметры могут определяться для стен из кирпича, строительных блоков, бруса и бревен. Например, при возведении кирпичной постройки в качестве исходных данных необходимо задать периметр, высоту и толщину стен, количество и размеры проемов, а также стоимость единицы материала. Программа определит расход кирпича в штуках и кубах, его стоимость, а также необходимый объем раствора. При этом будет указан вес стен для расчета фундамента. Сервис также позволяет подобрать тип и количество утеплителя. Для этого при определении параметров стен необходимо установить галочку в соответствующем месте.
5.3 Калькулятор теплых блоков Wienerberger
Всемирно известный бренд Wienerberger, лидер по производству теплой керамики, предлагает на своем сайте определить расход строительных блоков Porotherm http://www.wienerberger.ru/инструментарий/расчёт-расхода-блоков . Для расчета необходимо ввести размеры стен дома, указать габариты проемов, их количество.
Программа подберет возможные варианты кладки и выдаст расходы блоков различных параметров. Результат такого расчетабудет носить ориентировочный характер, но для составления предварительной сметы строительства этих данных будет вполне достаточно. Для уточнения объемов работ ресурс предлагает связаться со специалистом компании.
Итак, в данной статье мы рассмотрели наиболее удобные и популярные онлайн-сервисы, предназначенные для расчета строительных материалов. Стоит отметить, что каждый из них является бесплатным, а также имеет удобный современный интерфейс. Все эти ресурсы разработаны в виде подробных калькуляторов, размещенных прямо на страницах сайтов. Таким образом, вы сможете легко и быстро произвести требуемые вам вычисления.
Теплотехнический калькулятор точки росы онлайн
С помощью калькулятора теплоизоляции smartcalc.ru вы рассчитаете необходимую толщину утеплителя в соответствии с климатом, материалом и толщиной стен. Калькулятор точки росы онлайн поможет рассчитать толщину теплоизоляционных материалов и увидеть место выпадения конденсата на графике. Это весьма удобный онлайн калькулятор теплопроводности стены для расчета толщины утепления.
Калькулятор расчета толщины утеплителя стены
С помощью калькулятора теплоизоляции Пеноплэкс вы сможете быстро рассчитать толщину утеплителя для стен и других конструкций в соответствии с нормами СНиП, толщиной и материалом стен, используемой пароизоляцией и других важных параметров при утеплении. Подбирая различные строительные материалы, можно выбрать теплый и доступный вариант при строительстве загородного дома.
Калькулятор KNAUF расчета толщины утеплителя
Рассчитайте толщину теплоизоляционного материала в различных строительных конструкциях на калькуляторе KNAUF, разработанным специалистами из KNAUF Insulation. Все расчеты производятся в соответствии со всеми требованиями СНиП 23-02-2003 «Тепловая защита зданий». Счетчик теплоизоляции KNAUF имеет понятный интерфейс и позволит вам подобрать оптимальную толщину утеплителя.
Калькулятор Rockwool для расчета теплоизоляции
Калькулятор утепления Rockwool для расчета теплоизоляции стены и оценке экономической эффективности материала. Вы можете произвести в режиме реального времени теплотехнический расчет. Быстро подобрать наиболее оптимальную марку теплоизоляции Rockwool для вашего дома и рассчитать необходимое количество упаковок плит и рулонов утеплителя для обрабатываемой поверхности.
Калькулятор теплопроводности для расчета толщины стен
Споры по поводу необходимости утепления стен и фасадов домов никогда не затихнут. Одни советуют утеплять фасад, другие уверяют, что это экономически неоправданно. Частному застройщику, не обладающему серьезными познаниями в теплофизике во всем этом сложно разобраться. С одной стороны теплые стены снижают расходом на отопление. Но какова «цена вопроса» – теплые стены обойдутся дороже.
Что такое теплопроводность? Обзор
Вариация теплопроводности
Теплопроводность конкретного материала сильно зависит от ряда факторов. К ним относятся температурный градиент, свойства материала и длина пути, по которому следует тепло.
Теплопроводность окружающих нас материалов существенно различается: от материалов с низкой проводимостью, таких как воздух со значением 0,024 Вт / м • К при 0 ° C, до металлов с высокой проводимостью, таких как медь (385 Вт / м • К).
Теплопроводность материалов определяет то, как мы их используем, например, материалы с низкой теплопроводностью отлично подходят для изоляции наших домов и предприятий, в то время как материалы с высокой теплопроводностью идеально подходят для приложений, где необходимо быстро и эффективно отводить тепло из одной области. к другому, как в кухонных принадлежностях и системах охлаждения в электронных устройствах. Выбирая материалы с теплопроводностью, подходящей для области применения, мы можем достичь наилучших возможных характеристик.
Теплопроводность и температура
Из-за того, что движение молекул является основой теплопроводности, температура материала имеет большое влияние на теплопроводность. Молекулы будут двигаться быстрее при более высоких температурах, и поэтому тепло будет передаваться через материал с большей скоростью. Это означает, что теплопроводность одного и того же образца может резко измениться при повышении или понижении температуры.
Способность понимать влияние температуры на теплопроводность имеет решающее значение для обеспечения ожидаемого поведения продуктов при воздействии термического напряжения. Это особенно важно при работе с продуктами, выделяющими тепло, например электроникой, а также при разработке материалов для защиты от огня и тепла.
Теплопроводность и структура
Значения теплопроводности существенно различаются в зависимости от материала и сильно зависят от структуры каждого конкретного материала.Некоторые материалы будут иметь разные значения теплопроводности в зависимости от направления распространения тепла; это анизотропные материалы. В этих случаях тепло легче перемещается в определенном направлении из-за того, как устроена конструкция.
При обсуждении тенденций теплопроводности материалы можно разделить на три категории; газы, неметаллические твердые тела и металлические твердые тела. Различия в способностях этих трех категорий к теплопередаче можно объяснить различиями в их структурах и молекулярных движениях.
Газы имеют более низкую относительную теплопроводность, поскольку их молекулы не так плотно упакованы, как в твердых телах, и поэтому теплопередача сильно зависит от свободного движения молекул и скорости молекул.
Газы — плохой теплопередатчик. Напротив, молекулы в неметаллических твердых телах связаны в сетку решетки, и поэтому теплопроводность в основном происходит за счет колебаний в этих решетках. Непосредственная близость этих молекул по сравнению с молекулами газов означает, что неметаллические твердые тела имеют более высокую теплопроводность по сравнению с двумя, однако в этой группе есть большие различия.
Это изменение частично объясняется количеством воздуха, присутствующего в твердом теле, материалы с большим количеством воздушных карманов являются отличными изоляторами, тогда как те, которые более плотно упакованы, будут иметь более высокое значение теплопроводности.
Теплопроводность металлических твердых тел еще раз отличается от предыдущих примеров. Металлы обладают самой высокой теплопроводностью среди любых материалов, за исключением графена, и обладают уникальной комбинацией теплопроводности и электропроводности.Оба эти атрибута передаются одними и теми же молекулами, и связь между ними объясняется законом Видемана-Франца. Этот закон свидетельствует о том, что при определенной температуре электропроводность будет пропорциональна теплопроводности, однако при повышении температуры теплопроводность материала будет расти, а электропроводность — уменьшаться.
Тестирование и измерение теплопроводности
Теплопроводность — важнейший компонент взаимоотношений между материалами, и способность понимать это позволяет нам добиться наилучших характеристик материалов, которые мы используем во всех аспектах нашей жизни.Эффективное испытание и измерение теплопроводности имеют решающее значение для этих усилий. Методы измерения теплопроводности можно разделить на установившиеся или переходные. Это разграничение является определяющей характеристикой того, как работает каждый метод. Методы установившегося состояния требуют, чтобы образец и образец сравнения находились в тепловом равновесии до начала измерений. Для переходных методов это правило не требуется, поэтому результаты выдаются быстрее.
Исследования
Получение пористой муллитовой керамики с низкой теплопроводностью
В этом исследовании анализируется муллитовая керамика, образованная в результате вспенивания и отверждения крахмала муллитового порошка, а также то, как ее теплопроводность изменяется в зависимости от пористости керамики.Теплопроводность измерялась методом источника переходной плоскости Hot Disc (TPS) с TPS 2500 S. По мере увеличения пористости муллитовой керамики увеличивается и теплопроводность.
Материал с фазовым переходом нанографит / парафин с высокой теплопроводностью
Композиты нанографит (NG) / парафин были приготовлены в качестве композитных материалов с фазовым переходом. Добавление NG увеличило теплопроводность композитного материала. Материал, содержащий 10% NG, имел теплопроводность 0.9362 Вт / м • K
Артикул:
Нейв Р. Гиперфизика. «Теплопроводность». Государственный университет Джорджии.
Доступно по адресу: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thercond.html#c1
Материалы курса по неразрушающему контролю. «Теплопроводность». Ресурсный центр по неразрушающему контролю.
Доступно по адресу: https://www.ndeed.org/EducationResources/CommunityCollege/Materials/Physical_Chemical/ThermalConductivity.htm
Уильямс, М. «Что такое теплопроводность?». Phys.Org. 9 декабря 2014 г.
Доступно по адресу: http://phys.org/news/2014-12-what-is-heat-conduction.html
Что вы подразумеваете под теплопроводностью? Получено из определения теплопроводности
Thermtest База данных термических свойств материалов. Список значений теплопроводности
Кондуктивная теплопередача
Проводимость как теплопередача имеет место при наличии градиента температуры в твердой или неподвижной текучей среде.
При столкновении соседних молекул энергия проводимости передается от более энергичных молекул к менее энергичным.Тепло течет в направлении понижения температуры, поскольку более высокие температуры связаны с более высокой молекулярной энергией.
Кондуктивная теплопередача может быть выражена с помощью «закона Фурье »
q = (к / с) A dT
= UA dT (1)
где
q = теплопередача (Вт, Дж / с, БТЕ / час)
k = Теплопроводность материала (Вт / м · К или Вт / м o C, БТЕ / (час o F ft 2 / фут)
s = толщина материала (м, фут)
A = площадь теплопередачи (м 2 , фут 2 )
U = к / с
= Коэффициент теплопередачи (Вт / (м 2 K), Btu / (фут 2 ч o F)
dT = t 1 — t 2= температурный градиент — разница — по материалу ( o C, o F) 90 054
Пример — кондуктивный теплообмен
Плоская стенка изготовлена из твердого железа с теплопроводностью 70 Вт / м o C. Толщина стены 50 мм , длина и ширина поверхности 1 м на 1 м. Температура составляет 150 o C с одной стороны поверхности и 80 o C с другой.
Можно рассчитать кондуктивную теплопередачу через стену
q = [(70 Вт / м o C) / (0,05 м) ] [(1 м) (1 м)] [ (150 o C) — (80 o C)]
= 98000 (Вт)
= 98 (кВт)
Калькулятор теплопроводности.
Этот калькулятор можно использовать для расчета теплопроводности и теплопередачи через стену. Калькулятор является универсальным и может использоваться как для метрических, так и для британских единиц измерения, если они используются последовательно.
k — теплопроводность (Вт / (мК), БТЕ / (час o F ft 2 / фут))
A — площадь (м 2 , футы 2 )
t 1 — температура 1 ( o C, o F)
t 2 — температура 2 ( o C, o F)
s — толщина материала (м, фут)
Кондуктивный теплообмен через плоскую поверхность или стену со слоями из серии
Тепло, проводимое через стену со слоями в тепловой контакт можно рассчитать как
q = dT A / ((s 1 / k 1 ) + (s 2 / k 2 ) +… + (s n / k n )) (2)
где
dT = t 1 9014 9014 9014
= разница температур между внутренней и внешней стеной ( o C, o F)
Обратите внимание, что термостойкость из-за поверхностной конвекции и излучения не включается в это уравнение .Конвекция и излучение в целом имеют большое влияние на общие коэффициенты теплопередачи.
Пример — кондуктивный теплообмен через стенку печи
Стенка печи 1 м 2 состоит из внутреннего слоя нержавеющей стали толщиной 1,2 см и , покрытого наружным изоляционным слоем изоляционной плиты 5 см . Температура внутренней поверхности стали составляет 800 K , а температура внешней поверхности изоляционной плиты составляет 350 K .Теплопроводность нержавеющей стали составляет 19 Вт / (м · К) , а теплопроводность изоляционной плиты составляет 0,7 Вт / (м · К) .
Кондуктивный перенос тепла через многослойную стену можно рассчитать как
q = [(800 K) — (350 K)] (1 м 2 ) / ([(0,012 м) / (19 Вт / (м · К) )] + [(0,05 м) / (0,7 Вт / (м · К))] )
= 6245 (Ш)
= 6.25 кВт
Единицы теплопроводности
- Btu / (h ft 2 o F / ft)
- Btu / (h ft 2 o F / in10 904 БТЕ / (с фут 2 o фут / фут)
- Британские тепловые единицы дюйм) / (фут² ч ° F)
- МВт / (м 2 К / м)
- кВт / (м 2 К / м)
- Вт / (м 2 К / м)
- Вт / (м 2 К / см)
- Вт / ( см 2 o C / см)
- Вт / (дюйм 2 o F / дюйм)
- кДж / (hm 2 K / м)
- J / (см 2 o C / м)
- ккал / (hm 2 o C / м)
- кал / (с см 2 o C / см)
- 1 Вт / (м · К) = 1 Вт / (м 90 · 104 o 90 · 105 C) = 0.85984 ккал / (hm o C) = 0,5779 Btu / (ft h o F) = 0,048 Btu / (дюйм h o F) = 6,935 (BTu дюймов) / (фут² час ° F)
HTflux — Программное обеспечение для моделирования
В следующем тексте я постараюсь предоставить наиболее важную информацию о расчете тепловой массы для строительных приложений. Вторая часть — это краткое руководство по пониманию и использованию моего бесплатного Excel-калькулятора (ссылка внизу этой страницы).
Резюме для пользователей, не желающих читать весь текст…
Короче говоря, наиболее важным применением инструмента будет оптимизация (= максимизация) тепловой массы на внутренних поверхностях зданий.Это поможет снизить суточные перепады температуры внутри здания. Увеличивая внутреннюю массу, ваша стена, пол или потолок должны поглощать большую часть солнечного излучения в течение дня и выделять накопленное тепло через естественную вентиляцию в течение ночи.
Для этого вам нужно будет максимизировать результирующую цифру « внутренняя поверхностная теплоемкость » в инструменте. Как вы увидите, это свойство зависит в основном от внутреннего поверхностного слоя — до нескольких сантиметров или даже миллиметров ниже поверхности.Поэтому для достижения высокой теплоемкости вам необходимо выбрать материал, обладающий высокой теплопроводностью и плотностью этого самого верхнего внутреннего слоя.
Я считаю другие результаты расчетов (временные сдвиги, периодическое пропускание …) второстепенными. Однако для полного понимания темы или для специальных приложений я все же рекомендую прочитать весь текст ниже…
Введение
Следующие расчеты основаны на методах расчета, описанных в стандарте ISO 13786.Без явного упоминания этого в стандарте используются хорошо известные методы расчета, которые используются в электротехнике для описания поведения компонентов в цепях переменного тока. Расчеты производятся с использованием матриц комплексных чисел.
Для аналитического решения этих уравнений предполагается, что граничные условия (температуры или тепловые потоки), а также результирующие переменные (температуры и тепловые потоки) имеют синусоидальную форму с периодом 24 часа.Даже если это звучит как серьезное ограничение, на самом деле это подходящее и полезное предположение. Синусоидальная форма является подходящей, поскольку фактические среднесуточные колебания температуры в значительной степени соответствуют синусоидальным волнам или имеют, по крайней мере, доминирующую синусоидальную составляющую (см. Теорему Фурье). Ограничение периодической продолжительностью 24 часа также является разумным, поскольку только в течение этих 24 часов можно действительно ожидать циклических колебаний температуры.
Внутренняя теплопроводность
Результат расчета тепловой проводимости описывает способность поверхности поглощать и отдавать тепло (энергию) при периодическом синусоидальном колебании температуры с периодом 24 часа.Значение описывает амплитуду теплового потока (= максимальное значение), вызванное колебанием температуры в 1 K (° C). Предполагается, что температура на противоположной стороне стены поддерживается постоянной. Из-за линейности основных уравнений вы можете просто умножить значение на любые другие амплитуды температуры, чтобы получить соответствующие тепловые потоки, например если вы хотите оценить максимальный тепловой поток в / из вашей стены, вызванный колебаниями внутренней температуры на 6 ° C, а внутренняя теплопроводность вашей стены составляет 5 Вт / (м²K), то максимальный тепловой поток будет составлять 6 K * 5 Вт / (м²K) = 30 Вт / м².Следовательно, «ответ» этой стены на синусоидальное периодическое колебание температуры 6 ° C будет синусоидальным тепловым потоком, поглощающим максимум 30 Вт на квадратный метр в течение дня и высвобождающим те же 30 Вт / м² ночью.
Способность стены поглощать энергию в течение дня имеет решающее значение для предотвращения перегрева в летнее время или для снижения затрат на охлаждение. Внутренняя тепловая проводимость может использоваться для оценки этой способности, однако внутренняя поверхностная теплоемкость , которая почти пропорциональна этому значению, на самом деле больше подходит для этой работы (см. Ниже).
Time-shift — внутренняя теплопроводность
Тепловой поток, вызванный колебаниями температуры, сдвинут во времени, что означает, что он не имеет своих максимумов и минимумов одновременно. Тепловой поток обычно приводит к колебаниям температуры окружающей среды (тогда как фактическая температура поверхности стены будет отставать). Таким образом, если ваше выходное значение для временного сдвига составляет «2:00» (как в приведенном выше примере), максимальный тепловой поток в / из стены произойдет на 2 часа раньше, чем максимум / минимум температуры.
Этот временной сдвиг является лишь «побочным эффектом» тепловой буферизации, и на него невозможно повлиять / спроектировать без изменения теплоемкости стены. Фактически это является следствием температуры отстающей / отстающей поверхности стены, поскольку разница между температурой поверхности и температурой окружающей среды имеет значение для результирующего теплового потока.
Внешняя теплопроводность
В соответствии с внутренней теплопроводностью (см. Выше), тогда внешняя теплопроводность описывает способность аккумулировать тепло при внешних колебаниях температуры.Опять же, предполагается, что температура на противоположной стороне поддерживается постоянной.
Что касается значения этого значения, обратитесь к внешней теплоемкости ниже.
Time-shift — внешнее тепловое сопротивление
Опять же, соответствующее внутреннему сдвигу во времени, это результирующее значение скажет вам, сколько времени максимумы / минимумы теплового потока будут опережать максимумы / минимумы температуры.
Периодический коэффициент теплопередачи
Выходное значение периодического коэффициента теплопередачи описывает тепловой поток, вызванный колебаниями температуры на противоположной стороне компонента, при условии, что температура окружающей среды на той же стороне стены поддерживается постоянной.Хотя кажется, что периодический коэффициент теплопередачи вместе с его фазовым сдвигом является любимой темой многих ученых-строителей и специалистов по маркетингу изоляционных материалов, эффектом периодической теплопередачи можно пренебречь для большинства стандартных строительных приложений. В соответствии с современными стандартами изоляции (низкие значения коэффициента теплопередачи), изменения теплового потока, которые фактически будут вызваны колебаниями температуры на противоположной стороне компонента здания, будут незначительными. Чтобы проиллюстрировать это, мы можем использовать инструмент для расчета влияния на периодический коэффициент теплопередачи легкой изоляции по сравнению стяжеловесный утеплитель. Мы можем показать это на примере простой стены (или крыши), состоящей исключительно из 20 см железобетона и 15 см внешней изоляции. Предполагается сильное изменение внешней температуры на +/- 15 ° C (= диапазон 30 ° C). Исходя из этих предположений, получаем следующие результаты:
Легкая изоляция (25 кг / м³): перепады температуры внутренней поверхности: +/- 0,10 ° C, тепловой поток: +/- 0,77 Вт / м², фазовый сдвиг: 7,6 часа
Тяжелая изоляция (250 кг / м³): перепады температуры внутренней поверхности: +/- 0.04 ° C, тепловой поток: +/- 0,34 Вт / м², фазовый сдвиг: 14,6 часа
Это означает, что эффект очень хорошо виден с относительной точки зрения. Однако с абсолютной точки зрения разница вряд ли значима, поскольку результирующие общие тепловые потоки незначительны по сравнению с другими источниками тепла (например, незатененными или открытыми окнами).
Временной сдвиг периодического коэффициента теплопередачи
Значение описывает задержку, которую будет иметь тепловая волна, вызванная колебаниями температуры противоположной стороны стены.Чтобы соответствовать другим значениям временного сдвига, отрицательный знак означает, что тепловой поток отстает от колебаний температуры на другой стороне стены. Часто указывается, что необходимо нацелить временной сдвиг на 12 часов, поскольку это означает, что максимум тепловых волн будет приходить на другую сторону стены, когда температуры самые низкие (или наоборот). В отношении компонентов здания, соответствующих современным строительным стандартам, это правило можно считать устаревшим, поскольку фактические колебания температуры поверхности, вызванные колебаниями температуры на противоположной стороне компонента здания, обычно находятся в диапазоне десятых или даже нескольких сотых градусов по Цельсию.Поэтому соответствующие тепловые потоки обычно незначительны.
Внутренняя площадь теплоемкости
Значение внутренней теплоемкости описывает способность строительного компонента аккумулировать тепло в течение суточного цикла. Значение указывает количество тепла, которое может быть сохранено на одном квадратном метре в течение одного дня при колебании температуры в 1 градус, поэтому его единица измерения — кДж / м²K. Поскольку лежащие в основе уравнения линейны, можно умножить это значение на любую другую амплитуду температуры, чтобы вычислить соответствующее количество тепла, которое может быть сохранено.
Площадь теплоемкости рассчитывается путем интегрирования тепловых потоков, описываемых теплопроводностью за целый день. В отличие от способа определения единичной теплопроводности, внутренняя поверхностная теплоемкость учитывает колебания температуры с обеих сторон компонента здания. Следовательно, используя комплексные числа, его можно вычислить на основе внутренней проводимости и периодического пропускания. В зависимости от фактического временного фазового сдвига периодического коэффициента пропускания он может либо увеличивать, либо уменьшать пропускную способность по сравнению с ситуацией с постоянными внешними температурами.Однако, как упоминалось выше, для высоких стандартов изоляции влияние периодического пропускания будет незначительным. По этой причине внутренняя поверхностная теплоемкость обычно в значительной степени пропорциональна внутренней теплопроводности.
Очень важно иметь достаточно большую внутреннюю теплоемкость, чтобы избежать риска перегрева летом и / или снизить связанные с этим затраты на охлаждение. Общая теплоемкость внутренних помещений здания должна быть способна поглощать тепло в дневное время летнего дня, которое затем можно отводить в ночное время с помощью естественной вентиляции при более низких температурах наружного воздуха.Чем больше внутренняя теплоемкость, тем меньше будут колебания внутренней температуры. Очевидно, что, во-первых, дневные потоки тепла в здание следует ограничивать за счет оптимального затенения и удерживания окон и дверей закрытыми.
Чтобы определить полную теплоемкость комнаты, вам просто нужно будет сложить удельную теплоемкость всех конструкций, умноженную на их фактические поверхности (потолок, пол, стена-1, стена-2,…). Используя инструмент, вы обнаружите, что поверхностная теплоемкость в основном зависит от материала самого внутреннего слоя.Этот материал должен быть достаточно теплопроводным и обладать высокой теплоемкостью (в основном определяемой его объемной плотностью и проводимостью).
Это значит: бетонный потолок будет значительно лучше подвесного потолка, каменный пол будет лучше, чем паркет (или даже ковролин), толстая гипсоволокнистая плита будет лучше тонкой гипсокартонной плиты и т. Д.
Внешняя площадь теплоемкости
Соответствуя внутренней поверхностной теплоемкости, он описывает способность строительного компонента аккумулировать тепло в суточном температурном цикле на внешней поверхности.Опять же, тепловой поток, возникающий из-за колебаний температуры на противоположной (внутренней) стороне здания, также учитывается (но обычно имеет второстепенное значение).
С практической точки зрения, внешняя поверхностная теплоемкость может быть интересна, если вы заинтересованы в уменьшении колебаний температуры вашего фасада. Это может быть вопросом комфорта, но есть и еще один важный аспект: очень маленькая внешняя теплоемкость современных фасадов из полистирола является большим недостатком.Это результат сочетания легких изоляционных материалов с очень тонким слоем штукатурки. Недостаток теплоемкости приводит к высоким температурам поверхности в дневное время и — что, возможно, даже более проблематично — к низким температурам поверхности в ночное время. Вследствие чрезвычайно низкой теплоемкости сравнительно низкий эффект радиационного охлаждения, связанный с ясным ночным небом, может снизить температуру фасада даже ниже температуры окружающего воздуха. Следовательно, уровни относительной влажности на поверхностях повышаются и довольно часто достигается точка росы.Таким образом, температура фасада немного ниже температуры окружающей среды может способствовать или значительно стимулировать рост водорослей или грибков на фасаде. В настоящее время эта проблема решается путем добавления проблемных химических ингибиторов роста к рендерам или цветам, которые представляют угрозу для окружающей среды.
Общий
Инструмент Excel разделен на четыре листа с различными функциями:
- Calculation-Tool
Это основной лист, на котором выполняется расчет.Введите здесь слои материала и значения поверхностного сопротивления, чтобы получить результаты (также на этом листе). - Интерактивная диаграмма
На этой странице интерактивная диаграмма показывает изменения температуры и теплового потока во времени. Вы можете установить колебания температуры окружающей среды для одной или обеих сторон компонента здания и просмотреть результирующие тепловые потоки и температуры на обеих поверхностях компонента. - Материалы
На этом листе я представил типовые данные для 200 широко используемых материалов.Вы можете копировать и вставлять значения в таблицу расчетов. - Пример проверки
На последнем листе пример проверки, предусмотренный стандартом ISO 13786, вычислен для подтверждения достоверности алгоритма.
Поверхностное сопротивление R
si и R seПомимо слоев материала, вам нужно будет ввести правильные значения поверхностного сопротивления для ваших расчетов. Они описывают передачу тепла из окружающей среды на поверхности строительного компонента или из них.Они представляют собой упрощенную модель, поскольку реальный теплообмен происходит за счет комбинации трех различных физических процессов (излучения, конвекции, теплопроводности). Более подробную информацию о теории и рекомендуемых значениях можно найти на специальной странице.
Обратите внимание, что для этих расчетов мощности рекомендуется использовать значение 0,13 м²K / Вт для всех случаев, когда тепловые потоки в основном вызваны колебаниями внутренней температуры и нетто-среднее значение отсутствует или очень мало. тепловой поток в течение суток.Это означает, что, когда вы обычно используете 0,10 или 0,17 м²K / Вт для восходящего или нисходящего теплового потока при расчетах коэффициента теплопередачи для потолков или полов, может быть более подходящим использовать 0,13 м²K / Вт для любого случая для расчета тепла. -мощности. Когда основной тепловой поток, вызванный 24-часовыми колебаниями температуры, больше, чем средний чистый отток или приток, и, следовательно, общий тепловой поток меняет свое направление (знак) два раза в день, будет более подходящим использовать это значение.
Внутренние стены, потолки, полы
Конечно, вы также можете использовать этот инструмент для расчета теплоемкости внутренних компонентов здания.В этом случае просто используйте одно и то же значение поверхностного сопротивления (обычно 0,13 м²K / Вт) для каждой стороны компонента. Метки «внутренняя» и «внешняя» будут тогда служить только для обозначения конкретной стороны стены.
Этажи с заземлением
Вы также можете использовать этот инструмент для расчета внутренней поверхностной теплоемкости полов (или стен) с контактом с землей. Для этой цели я рекомендую добавить слой почвы толщиной 2 м (например, использовать глину / ил из списка материалов) на внешней стороне строительного элемента.В этом случае, конечно, будут интересны только значения внутреннего результата. (Для диаграммы вы должны использовать среднемесячную или среднегодовую температуру почвы на этой глубине).
Диаграмма
Диаграмма поможет вам понять эффект буферизации вашего компонента здания, а также происходящие сдвиги фаз с обеих сторон. Вы можете предположить, что температура колеблется только с одной стороны, чтобы лучше понять последствия, или вы можете предположить, что колебания температуры на обеих поверхностях отражают более реалистичную ситуацию.Суточные колебания температуры можно определить, указав среднюю температуру, амплитуду температуры, а также определенное время для максимальной температуры.
Конечно, возникающие колебания температуры также будут зависеть от результирующих тепловых потоков, проходящих через ваш компонент, но в основном они зависят от солнечной энергии и вентиляции. Следовательно, для точного определения фактических значений потребуется полное моделирование здания. Чтобы понять процесс и оценить потенциальный диапазон температур поверхности и тепловых потоков, будет достаточно использовать реалистичные предположения для внутренних и внешних температур.
Список материалов
Инструмент также включает в себя список параметров материала для прибл. 200 распространенных материалов. Вы можете использовать копирование и вставку для переноса соответствующих материалов в виде слоев на расчетный лист. Для точных расчетов следует использовать точные значения, которые обычно можно найти в паспорте конкретного продукта. Если вы используете наше программное обеспечение HTflux, вы можете использовать дополнительные материалы онлайн-базы данных материалов.
Ссылка для скачивания на бесплатный инструмент расчета
Для более подробного анализа, моделирования, базы данных свойств материалов и т. Д.пожалуйста, используйте наше программное обеспечение HTflux.
www.htflux.com, Даниэль Рюдиссер, © 2018
Этот инструмент Excel разработан для бесплатного использования и распространения. Инструменты прошли валидацию, однако мы не несем ответственности за результаты расчетов или связанные с ними убытки или ущерб.
Мы не можем найти эту страницу
(* {{l10n_strings.REQUIRED_FIELD}})
{{l10n_strings.CREATE_NEW_COLLECTION}} *
{{l10n_strings.ADD_COLLECTION_DESCRIPTION}}
{{l10n_strings.COLLECTION_DESCRIPTION}} {{addToCollection.description.length}} / 500 {{l10n_strings.TAGS}} {{$ item}} {{l10n_strings.ПРОДУКТЫ}} {{l10n_strings.DRAG_TEXT}}{{l10n_strings.DRAG_TEXT_HELP}}
{{l10n_strings.LANGUAGE}} {{$ select.selected.display}}{{article.content_lang.display}}
{{l10n_strings.AUTHOR}}{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}
{{$ select.selected.display}} {{l10n_strings.CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON}} {{l10n_strings.CREATE_A_COLLECTION_ERROR}} Я обнаружил, что слишком много ребер, жалюзи и дыры в этом мире.Причина в том, что у нас мало интуиции, когда она доходит до отвода тепла. Насколько сильно нагревается резистор на 5 Вт? Да, очень жарко. Но положите резистор в коробку, и насколько она нагреется? Есть несколько проблем, которые необходимо решить при разработке электроники для отвода тепла. В Во-первых, это снижение температуры горячих точек. Резисторы силовые, силовые полупроводники и, возможно, индуктивные устройства не всегда предназначены для распространения их собственное тепло, и поэтому радиатор или правильно спроектированная печатная плата нужен радиатор. Но чтобы получить тепло за пределы корпуса, мы нужно переместить его сквозь стены в воздух. Итак, температура внутри коробка будет зависеть от ватт выделяемого тепла, площади стенок коробки, материал стенок коробки и температура наружного воздуха. Этот калькулятор может Подскажите примерное повышение температуры в коробке, которое вы можете применить. Примечание: в этом калькуляторе учитывается только проводимость, а не излучение. Тепловой Значения проводимости являются номинальными или средними значениями для данного класса материалов.если ты знать теплопроводность материала вашей стены, вы можете ввести ее в поле напрямую. Например, у меня есть преобразователь DC / DC с мощностью 10 Уоттс сидит на моем столе. КПД составляет 85%, поэтому выделяемое тепло составляет 0,15. * 10 Вт = 1,5 Вт. Миниатюрный корпус размером 6,5 х 3 х 2 см. Корпус изготовлен из АБС-пластика толщиной 2 мм. Вводя числа в калькулятор, я нахожу, что температура внутри коробка будет только 1,84 ° C. Никаких отверстий или жалюзи! Для использования калькулятор , введите сначала высоту, длину и ширину поля, затем нажмите кнопку «Рассчитать площадь поверхности».»Затем введите толщину стены, материала или теплопроводности, а также температуры воздуха. Изменение этих параметры автоматически рассчитают повышение температуры и температура внутри коробки. |
значений U для чайников | Ecomerchant
В ходе повседневной работы мы сталкиваемся с множеством клиентов, строителей и торговых представителей, которые находят значения U немного запутанными, особенно когда дело доходит до понимания того, что на самом деле означает значение U и как оно повлияет на производительность или улучшит ее. здания, поэтому мы составили краткое объяснение стиля «U-Value для чайников», чтобы помочь.
Мы предполагаем, что если вы читаете это, вы болван? Конечно, нет ……… но не могли бы вы объяснить, что такое значение U, как оно используется или как рассчитать его кому-то еще? Скорее всего, нет (если вы не обладаете соответствующей квалификацией), но ценности U возникают снова и снова во всевозможных местах, от строительных норм и правил до коммерческой литературы от производителей и журнальных статей, поэтому стоит изучить основы, чтобы понять что они собой представляют, так что в следующий раз, когда вы услышите, что кто-то использует этот термин, говоря о строительстве, вы лучше поймете, понимают ли они, что такое значение U и что оно на самом деле означает.
Понимание того, как рассчитать значения U для секций здания, представляет собой довольно сложный набор расчетов. Расчет общих значений требует специальных знаний и программного обеспечения.Основные сведения о значениях U?
U-значения измеряют, насколько материал эффективен как изолятор. Чем ниже значение U, тем лучше материал как теплоизолятор.
U-значения обычно используются для описания тепловых характеристик (тепловых потерь) для секции конструкции, которая состоит из нескольких материалов, например стены из дерева, изоляции и гипсокартона.Они используются в качестве общего руководства по характеристикам строительного элемента. U-значения
(иногда называемые коэффициентами теплопередачи) используются для измерения того, насколько эффективны элементы ткани здания в качестве изоляторов. То есть насколько они эффективны в предотвращении передачи тепла между внутренней и внешней частью здания. Наряду со значениями U вы часто слышите значения R, а значение R является мерой теплового сопротивления, а не теплопередачи, они часто описываются как обратные значениям U, однако значения R не включают поверхностную теплопередачу — более об этом позже.
Принято считать, что чем ниже коэффициент теплопроводности элемента ткани здания, тем медленнее тепло может проходить через него и, следовательно, тем лучше он действует как изолятор. В широком смысле, чем лучше (т.е. ниже) коэффициент теплопроводности материала здания, тем меньше энергии требуется для поддержания комфортных условий внутри здания.
Тепловые характеристики измеряются с точки зрения теплопотерь и обычно выражаются в строительной отрасли как коэффициент теплопроводности или коэффициент теплопередачи.При разработке стратегии строительства обязательно потребуются расчеты коэффициента теплопроводности. Некоторые термины имеют схожее значение, и в Интернете можно найти противоречивые интерпретации. Ниже описаны различные термины и их взаимосвязь.
Что такое U-значение?
Когда мы говорим о U-значении определенного компонента здания, такого как стена, крыша или окно, мы описываем, насколько хорошо или плохо этот компонент передает тепло изнутри (обычно) наружу.В холодный день в Великобритании, когда нам тепло и уютно внутри здания, мы будем счастливее, чем ниже U-Value, потому что это означает, что наша стена, крыша или окно хорошо выдерживают нагрузку. тепло выходит наружу.
«Компонент» может быть однородным материалом (например, бетонная подпорная стена) или рядом материалов, находящихся в контакте (например, в стене с полостью).
Техническое название, для которого мы используем сокращение «U-Value», — «Тепловая проницаемость».
Коэффициент теплопроводности компонента здания, такого как стена, крыша или окно, измеряет количество энергии (тепла), потерянное через квадратный метр ( 2 м) этого материала на каждый градус (К) разницы в температуре между внутри и снаружи.
Прежде чем мы начнем разбираться в том, что это значит, давайте разберемся с единицами, которые мы используем для его определения.
- Энергия течет в ваттах (что является мерой энергии в «джоулях», протекающей за период времени в «секундах»).
- Температура измеряется в градусах Кельвина, что практически равно градусам Цельсия для всех нас.
Фактическое уравнение включает в себя еще несколько «значений», как вы можете видеть из уравнения открытия, которое в совокупности дает нам U-значение нашей стены или окна. Мы рассмотрим их чуть позже, но основное уравнение таково:
U = 1 / R в Вт / м 2 K или Ватт на квадратный метр на градус Кельвина
Пример работы U-значений:
Коэффициент теплопроводности одного листа стекла в традиционном оконном стекле равен 6.0 Вт / м 2 K — это означает, что на каждый градус разницы температур между внешней и внутренней частями квадратный метр остекления теряет 6 Вт. Так, например, если разница температур в типичный холодный день составляла 15 градусов, то потери тепла составили бы 15×6 = 90 Вт на квадратный метр. Какая жара!
Для сравнения, коэффициент теплопроводности современного элемента с тройным остеклением может составлять всего 0,7 Вт / м 2 K — это совсем не так много тепла.
«R-value»
«R-value» (величина, обратная U-значению) означает тепловое сопротивление или степень сопротивления материала проходящему через него теплу для данной толщины и площади. Значение R выражается как м 2 К / Вт
Тепловой поток через конструкцию здания зависит от разницы температур в нем, проводимости используемых материалов и толщины материалов. Конечно, разница температур — это внешний фактор.Толщина и проводимость — это свойства материала. Большая толщина означает меньший тепловой поток, а также меньшую проводимость. Вместе эти параметры образуют тепловое сопротивление конструкции.
Если компонент является композитным (состоящим из нескольких материальных элементов), общее сопротивление — это сумма сопротивлений каждого элемента.
Строительный элемент с высоким термическим сопротивлением (например, минеральная вата) является хорошим изолятором; один с низким тепловым сопротивлением (например,грамм. бетон) — плохой изолятор.
Пример значений R:
Изоляционная плита из древесного волокна толщиной 100 мм будет иметь значение R 2,6 м 2 K / Вт, тогда как для сравнения
100-миллиметровый стекловолоконный изоляционный войлок имел бы значение R 2,2 м. 2 K / Вт, что делает древесное волокно более устойчивым к потерям тепла.
«R-Value» тоже имеет собственное уравнение, которое основывается на еще одном «значении»:
R = t / λ, где «t» — толщина материала в метрах, а λ — теплопроводность (иногда известная как «k-значение»).
Значение лямбда (λ)
Значение лямбда (λ), или теплопроводность, или «значение k» материала — это значение, которое указывает, насколько хорошо материал проводит тепло.Он указывает количество тепла (Вт), которое проходит через стену площадью 1 м² при толщине 1 м, когда разница температур между противоположными поверхностями этой стены равна 1 K (или 1 ºC). На практике λ — это числовое значение, выраженное в Вт / (мК). Чем ниже значение λ, тем лучше изоляционные свойства материала.
Примеры теплопроводности:
- Изоляция из древесного волокна имеет теплопроводность 0,038 Вт / мК
- Изоляция из стекловолокна имеет теплопроводность 0.044 Вт / мК
- А теплопроводность плотного бетона составляет около 1,5 Вт / мК
Для сравнения, теплопроводность меди составляет колоссальные 401 Вт / мК — вот почему у некоторых ваших кухонных сковородок может быть медное дно. .
На данный момент достаточно «ценностей»!
Расчет коэффициента теплопроводности строительного элемента
Ниже приведен пример того, как рассчитать приблизительное значение коэффициента теплопередачи для типичной полой стены в Великобритании, хотя и с полостью 100 мм.Более точные расчеты потребуют дополнительных данных, включая потери из-за теплового моста; тепловой байпас, а также дополнительные материалы, такие как строительные швы.
Пример расчета
Следовательно, коэффициент U для всего элемента стены = 1 / R = 1 / 4,16 = 0,24 Вт / м 2 K
Завершение расчета
Поскольку расчет значений U может занять много времени и быть сложным (особенно там, где, например, необходимо учитывать холодный мост), было выпущено множество онлайн-калькуляторов значений U.Однако многие из них доступны только по подписке, а бесплатные, как правило, слишком упрощены. Другой вариант — запросить расчет, например, у производителя изоляции, продукт которого указывается.
Утвержденные строительные нормы и правилаДокументы L1A, L2A, L1B и L2B в Англии и Уэльсе ссылаются на публикацию BR443 «Соглашения по расчетам U-значения для утвержденных методик расчета», а в сопутствующем документе «Соглашения по U-значению» на практике.Рабочие примеры с использованием BR 443 служат полезным руководством. Два основных коммерческих калькулятора U-значения поставляются Build Desk (только для Windows) и BRE (только для Windows). Калькулятор Build Desk настолько же всеобъемлющий и удобный, насколько и он, но за огромную годовую лицензионную плату. Оба приложения доступны только для Windows, что неудобно для пользователей Mac.
Два бесплатных удобных приложения для IoS: Калькулятор U-значения от Марка Стивенса из TeachPassiv, который требует ввода вручную; и калькулятор U-Value Insulation Calculator от Dorada App Software.
Расчеты, подобные этим, используются для подтверждения прогнозируемого поведения (и соответствия) строительного элемента, но прежде, чем вы начнете рассматривать это как выполненную работу, сделайте быстрый галоп и объясните, почему слишком сильная зависимость от одних только значений U может привести к снижению производительности.
Есть ли проблема с использованием только значений U при выборе строительных материалов?
Ответ — да. Во-первых, потому, что способ передачи тепла в зданиях непростой и включает в себя различные механизмы, которые не учитываются в одном расчете, а во-вторых, поведение отдельных конструкций может полностью свести на нет любые ожидаемые характеристики, предсказанные исключительно на основе значений U.
Нам нужно начать с теплопередачи; это процесс теплообмена между различными системами. Обычно чистая теплопередача между двумя системами осуществляется от более горячей системы к более холодной.
Теплопередача особенно важна в зданиях для определения конструкции конструкции здания, а также для проектирования пассивных и активных систем, необходимых для обеспечения требуемых тепловых условий при минимальном потреблении энергии.
Тепловое поведение системы является функцией динамических отношений между основными механизмами, проводимостью, конвекцией и излучением.В Великобритании, безусловно, самыми большими механизмами потери тепла являются теплопроводность и конвекция, вызванные движением воздуха, то есть негерметичными зданиями, несмотря на заявления некоторых производителей, что радиационные потери составляют лишь крошечную часть потенциальных потерь тепла зданиями в климате Великобритании.
Ниже приведена иллюстрация того, как разные образования могут иметь одинаковое значение U, но заметно разный «фазовый сдвиг», который представляет собой способность секции здания задерживать теплопередачу. Важное соображение при проектировании определенных типов зданий, таких как помещения на крыше или легких конструкций, таких как деревянный каркас.
Итак, как производительность отдельной конструкции может полностью отрицать любую ожидаемую производительность, предсказанную исключительно на основе значений U?
Возьмем, к примеру, полую стену; этот пример используется, потому что это все еще наиболее распространенная форма жилищного строительства в Великобритании, где типичное значение U (без изоляции) составляет 1,5 Вт / м²K, а строительные нормы требуют минимум 0,18 Вт / м²K. Очевидно, что для внешней стены необходима какая-то изоляция, но даже если она рассчитана, существуют и другие факторы, которые могут нанести ущерб с прогнозируемым общим средним значением U.
- Внешняя температура
- Коэффициент излучения материалов может иметь влияние
- Скорость ветра
- Проливной дождь
- Проницаемость (утечка воздуха)
Мы должны помнить, для чего существуют строительные нормы, они не являются библией качества для строителей. являются минимальными стандартами, взятые по отдельности, они могут показаться бессмысленными и могут помочь создать неподходящие решения или даже побудить выбирать материалы по единой метрике производительности, которая может исключить другие косвенные преимущества, или, что еще хуже, способствовать критическому сбою в дальнейшей работе наблюдается рост числа проектов модернизации теплоизоляции, в которых вытекающие из этого преимущества альтернативных материалов (вероятно, упущенные из-за цены) были принесены в жертву ради достижения соответствия наименьшему значению U по цене, в результате чего сырость сопровождалась повреждением конструкции.
Значение Uимеет значение, но не менее, если не более важно, воздухопроницаемость. Помните, что на характеристики стены влияют другие факторы, не учитываемые классификацией U-значения.
Несмотря на то, что лабораторный тест U-value фиксирует влияние конвективных петель внутри изоляции, он не может измерить количество утечки воздуха через конструкцию реальной стены после установки изоляции. На коэффициент воздухопроницаемости в стене влияет:
- плотность и непрерывность изоляции,
- наличие или отсутствие воздушного барьера в сборке стены,
- скорость ветра и
- разница давления между внешней и внутренней стороной стены.
- Качество изготовления
Давайте вернемся к нашей полой стене, теперь она включает в себя интегрированную изоляцию, которая обычно является PIR или минеральной ватой. Мосты холода или тепловые мосты явно нарушают целостность изоляции и, следовательно, увеличивают общий коэффициент теплопередачи стены. Но существует менее очевидный тип мостика холода (показан слева), известный как тепловая петля: воздушный зазор более 1 мм между изоляцией и внутренним листом стены обеспечивает циркуляцию воздуха, создавая конвективные токи и приводя к значительному увеличению общее U-значение.Впервые это было представлено Яном Лекомпте в статье 1990 года под названием «Влияние естественной конвекции в изолированной полости на тепловые характеристики стены». Многие ли из нас знают об этом и заботятся об этом в деталях?
Независимо от того, насколько хорошее значение U изоляции, плохая установка может полностью свести на нет какие-либо преимущества и вызвать другие нежелательные проблемы. Часть задания проектировщиков должна заключаться в выборе правильной изоляции для каждого применения, которая ДОЛЖНА включать простоту установки и включать преимущества, выходящие за рамки одного только значения UЕсть еще одна причина, которую необходимо учитывать; качество сборки.Все расчеты, сделанные с использованием программного обеспечения для строительства, основаны на предположении, что элементы правильно и идеально сконструированы, хотя большинство моделей допускают добавление допусков (или ошибок). Плохо подогнанные или плохо построенные здания могут не только свести на нет ожидаемые преимущества, но и привести к отказу и значительно ухудшить ситуацию. производительность, чем прогнозировалось. Это не обязательно должно быть ковбойское здание, оно может быть непреднамеренным, большинство строителей не заметят расширенных зазоров на стороне изоляции, установленной между стойками, так как визуально она может казаться тесной, но, как показывают многие примеры из реальной жизни, складываются такие сбои. в некоторых случаях может привести к снижению производительности до 100%.Таким образом, строители должны учитывать простоту использования при составлении спецификации, они также должны выбирать лучший продукт для каждого элемента, а там, где требуются особые навыки или внимание к деталям, это должно быть частью краткого задания строителей.
Что мы можем сделать по поводу значений U?
Значение U — очень полезное измерение, но то, что вы знаете значение U продукта, не означает, что вы знаете все необходимое для прогнозирования реального теплового потока через стену, пол или крышу. Единичные метрики, такие как значения U (или, например, теплотворная способность пищевых продуктов), являются частью расчета и часто дают только общее представление о производительности, чтобы помочь вам сделать выбор или соответствовать минимальным нормативным стандартам для обеспечения превосходных тепловых характеристик, которые вам необходимо создать. далеко за пределами правил.
Подводя итог при рассмотрении того, как строится элемент здания, рассмотрите целевые значения U как место для начала, а не до конца, убедитесь, что учтены другие особенности компонентов, и всегда помните, что простые простые методы строительства позволяют свести к минимуму ошибку строителя. и производительность увеличена.
С благодарностью
www.greenspec.co.uk для получения технических деталей, расчетов и примеров
Дополнительный материал из оригинальной публикации 2010/08 / u-and-g-values-unified-theory-of Игнасио Фернандес Солла
Термическое сопротивление в Revit плюс соответствующая статья ArchDaily
На днях я прочитал статью ArchDaily о расчете коэффициента теплопередачи стены (см. Ссылку ниже).Мне пришло в голову написать сообщение о том, как Revit может рассчитать тепловое сопротивление — R-значение — материалов и сборок … вот оно. ArchDaily article:
Как рассчитать коэффициент теплопередачи (коэффициент теплопередачи) в оболочке здания
Для сравнения давайте посмотрим на таблицу «Расчет R-значения монтажной стены» из ColoradoEnergy. Org находится здесь: http://www.coloradoenergy.org/procorner/stuff/r-values.htm
* Это изображение размещено с разрешения Randy L.Martin
На указанном графике есть столбец, в котором рассчитывается состояние только стойки, а другой столбец — только изоляция, заполняя пространство 3,5 дюйма в стене. Давайте рассмотрим каждое условие в Revit:
Только шпильки Calc
Если мы откроем шаблон жилого дома, который поставляется с Revit, мы увидим значение R, указанное для типа стены Exterior — Деревянный сайдинг на деревянных шпильках . R = 8,30Однако диаграмма имеет дело со шпилькой 2х4 (3 1/2 дюйма), а не со шпилькой 2х6 (5 1/2 дюйма), поэтому давайте изменим это…
Revit (см. Изображение ниже). Обратите внимание, что значение R автоматически изменилось. R = 5,90
Если мы удалим все слои, кроме одного, в данной сборке стены, мы получим R-значение, основанное на толщине этого материала, которое мы можем использовать для сравнения со связанной таблицей. R = 0,68
В таблице ниже перечислены R-значения компонентов, а затем общая сумма. Мы должны понимать, что есть большая дыра с типом стены по умолчанию … он предполагает сплошной / сплошной деревянный слой 3 1/2 дюйма без пространства или изоляции! Однако это очень похоже на столбец «гвоздики» в нашем примере диаграммы.
Единственное исключение — отсутствие слоев наружной / внутренней воздушной пленки. Вам не нужно добавлять их для Autodesk Insight или любого динамического теплового моделирования, такого как DOE2 или EnergyPlus, потому что они рассчитываются на протяжении всего моделирования, например учитывает взаимосвязь между увеличением скорости ветра и уменьшением коэффициента внешней конвекции.
— | |
Стекловолокно 3 1/2 дюйма Батт Изоляция | |
— | |
5.9 |
Тепловые свойства гипсокартона кажутся неправильными, поскольку в нескольких источниках, которые я проверил, указано значение R 0,45 для толщины 1/2 дюйма. Однако для сравнительного анализа это не имеет особого значения. Но вы можете изменить это в соответствии с пример, показанный далее в этом посте.
Стоит отметить, что слои мембраны не включены, даже если они имеют термические свойства, назначенные в Revit, поскольку ноль раз все равно нулю! Как только что было показано, Revit выполняет расчет сопротивления / проводимости исключительно с точки зрения основных принципов i.напр .:
- сопротивление = длина / проводимость
- проводимость = 1 / сопротивление
Расчет только для изоляции
Затем нам нужно посмотреть на сборку стены с простой изоляцией, без шпилек. Мы видим, что результат далек от того, что для теплоизоляции войлока используется специальный термодатчик Thermal Asset (TA). Следующие несколько изображений показывают, как я провел быстрый поиск в Интернете, чтобы найти правильный Thermal Conductivity , выполнил необходимое преобразование единиц измерения и обновил TA. СОВЕТ: Если у вас есть доступ к WUFI Pro, вы можете найти точные свойства материалов в его «базе данных материалов».Поиск подходящих теплоизоляционных свойств стекловолоконной изоляции …
Нам нужно преобразовать в правильные единицы … Я использовал CalculatorEdge , Thermal Calculators: При необходимости мы можем настроить тепловые компоненты в Revit. В этом случае я ввожу желаемую теплопроводность:
Теперь у нас есть более реалистичное R-значение … обратите внимание в нашей справочной ссылке, что в следующей таблице ниже указано более низкое R-значение для 3 1/2-дюймовой изоляции войлока.R = 11,74
Вот результаты для примера с изоляцией:
— | |
Изоляция из стекловолокна 3 1/2 дюйма | |
— | |
— | |
13.43 |
Если вы произведете вычисления для утяжеленных шпилек (25%) и изоляции (75%), мы получим 11,55 . Если учесть пленку наружного / внутреннего воздуха, то результат будет 12,40 — довольно близко к 12,03 в приведенной таблице.
Комбинация шпилек и изоляции
Из справки Revit:R-value Мера теплового сопротивления (или сопротивления теплопотери) через слой материала заданной толщины.R-значение = толщина / проводимость.
Примечание: В случаях, когда определенный слой материала относится к воздушному зазору, материал неоднородной толщины (например, металлический настил или двутавровая балка) или комбинация материалов (например, металлическая перегородка на стойке — воздух и сталь) ручная регулировка толщины слоя и / или теплопроводности необходима для правильного расчета R-значения. Его не следует путать со значением R для всей стены, пола или элемента крыши, которое представляет собой сумму сопротивлений каждого слоя материала, составляющего каждый элемент.
Обратите внимание, что на изображениях ниже я создал пользовательский Thermal Asset для учета 25% шпилек и 75% изоляции, с общим значением R с использованием взвешенных значений для проводимости, удельной теплоемкости и плотности.
Результирующее R-значение такое же, как и при ручном усилии. R = 11,58
Autodesk Insight
Теперь, как и ожидалось, мы видим правильное значение R в Insight, когда Detail Elements отмечен в диалоговом окне Revit Advanced Energy Settings .Треугольник в динамическом вводе Insight для Wall Construction представляет текущую настройку BIM , то есть способ ее моделирования в настоящее время.
Вывод
Хотя тепловые свойства, поставляемые с Revit, могут быть ненадежными, как и контент, который они предоставляют, это отправная точка и пример того, как все может работать. Конечно, есть несколько других проблем, связанных со сборками, тепловым байпасом и отверстиями, но это хорошее начало для раннего моделирования энергопотребления и сравнительного анализа.Кстати, спасибо Яну Моллою из Autodesk за ответы на несколько вопросов, связанных с этим постом!
Супер веселая штука!
Следите за обновлениями глав BIM на @DanStine_MN в Twitter
.