Газобетон толщина: Толщина стен из газобетона по нормативам

Содержание

10 ошибок при возведении стен из газобетона

Сегодня мы расскажем об ошибках, которые чаще всего допускают при сооружении газобетонных частных домов. Казалось бы, откуда взяться ошибкам? Ведь технология устройства зданий из газобетона детально продумана, есть национальный стандарт по ним*, ведущие производители блоков, в частности Ytong, предоставляют подробные инструкции, блоки легко укладывать и обрабатывать. Тем не менее, культура строительства в нашей стране всё ещё «хромает на обе ноги», и неверные решения при работе с газобетоном, увы, не редкость.

Негативные последствия этих ошибок – те же, что и в случае любой неправильно выполненной каменной кладки (из полнотелого кирпича, поризованной керамики, пенобетона и пр.). Главная проблема – трещины, которые распространяются по кладке. В принципе появление трещин, даже сквозных шириной до 2 мм в каменных наружных стенах, не считается признаком аварийного состояния здания**. Однако это может приводить к другим неприятностям:

  • Распространение трещин по наружной и внутренней отделке.
    Может потребоваться дорогостоящий ремонт.
  • Промерзание стен и, как следствие, увеличение затрат на отопление
  • Ухудшение микроклимата в жилых помещениях.
  • При самом неудачном исходе – нарушение целостности конструкции здания.

Появление трещин может быть вызвано целым рядом нарушений, допущенных строителями.

1.  Ошибки при сооружении фундамента

Фундамент в виде железобетонной плиты

Кладка из газобетона – не самая прочная на изгиб. И если фундамент, на который она опирается, недостаточно жесткий и устойчивый, имеет существенные отклонения по геометрии, не соответствует типу грунта и рельефу местности на участке, то кладка может в каких-то местах прогнуться и треснуть. Чтобы этого не произошло, нужно грамотно проектировать и качественно выполнять фундамент. При его сооружении следует учитывать:

  • Особенности грунта на участке: степень его пучинистости, уровень залегания грунтовых вод. Эту информацию можно получить только на основании инженерно-геологических изысканий. Метод «опроса соседей» крайне не точный, и полагаться на него нельзя.
  • Специфику рельефа местности: наличие уклона, перепадов по высоте.
  • Все нагрузки на основание. Их можно определить только с помощью расчёта, выполненного профессиональным конструктором.

Специалисты рекомендуют устраивать под газобетонным домом железобетонный фундамент. Хорошо работают малозаглубленные ленты или плиты, в том числе очень популярные сегодня утеплённая шведская плита (УШП) и утеплённый финский фундамент (УФФ, лента в сочетании с утепленными полами по грунту). Допустимы, помимо прочих, и фундаменты из блоков ФБС с обязательным обвязочным поясом по верхнему ряду, например, монолитным.

2.  Ошибки при укладке первого ряда блоков

Выравнивание блоков первого ряда

Первый ряд блоков задаёт геометрию всей кладки. Если выложить его недостаточно ровно, с отклонениями от нужных высотных отметок, со смещёнными диагоналями, то исправить ошибки последующими рядами не получится. Наоборот, ошибки будут только нарастать.

Блоки первого ряда укладывают на обычный цементно-песчаный раствор толщиной не более 20 мм. Но это не означает, что раствором можно выровнять сильные перепады по высоте на плоскости фундамента. Допустимое отклонение от линии горизонта – 30 мм. Если оно больше, придётся выравнивать фундамент (за счёт подрядчика, некачественно выполнившего свою работу) и только затем начинать кладку.

Небольшие перепады по высоте между соседними в ряду блоками устраняют шлифовальной доской или рубанком. Ровность кладки контролируют с помощью лазерного или оптического нивелира.

Первый ряд блоков обязательно нужно обезопасить от капиллярного подъёма влаги через фундамент. Для этого между стеной и фундаментом предусматривают гидроизоляцию – битумные рулонные и обмазочные материалы, полимерцементные составы и др.

Подробнее о работе с газобетоном можно узнать на курсах по строительству из Ytong

3.  Ошибки при выборе клеевого состава

Нанесение тонкошовного клеевого состава

Большая ошибка – возводить стены из газобетона с помощью обычного цементно-песчаного раствора, получая при этом ту же толщину шва, что и в традиционных каменных стенах – до 12 мм. Столь толстый шов приводит к существенным потерям тепла из дома, сводя на нет преимущество газобетона в энергоэффективности над другими каменными материалами. И наоборот, если использовать специальный клей для газобетона, толщина шва будет составлять всего 1-3 мм, теплопотери минимальны.

Обычный раствор вместо клея выбирают люди, которые хотят сэкономить, но неправильно оценивают возможные затраты. Растворный шов толще клеевого в 4 раза и потому расход на него в 4 раза больше. Притом стоимость обычной цементно-песчаной смеси в 2 раза дешевле, чем клея. В итоге – двойная переплата за обычный раствор. Плюс более высокие затраты на его транспортировку.

Клей для тонкошовной кладки Ytong

Другая ошибка – использовать дешёвый клей вместо более дорогого, но рекомендованного производителем блоков. Чем опасен дешёвый? В нём может быть большое содержание трёхкальцевого алюмината, из-за которого состав оказывается не сульфатостойким. Такой клей может со временем выкрашиваться и вызывать растрескивание кладки по шву.

В связи с чем Ytong рекомендует использовать только клей под собственной торговой маркой. Потому что этот состав протестирован в ведущих немецких лабораториях, и его качество не вызывает сомнений. Подробнее о клее Ytong можно узнать по ссылке

4.  Ошибки при перевязке блоков

Кладка должна выдерживать изгибающие и срезающие усилия. Для этого нужно правильно перевязывать соседние ряды блоков. Согласно российским нормам***, величина перевязки блоков высотой 250 мм должна составлять не менее 40% от высоты блока. То есть не менее 100 мм. Немецкие нормы, на которые ориентируется Ytong, ещё строже – не менее 125 мм. Притом запрещено использовать в кладке обрезанные элементы короче 50 мм. А обрезок большего размера допустимо располагать на удалении 125 мм от шва между блоками нижнего ряда. Неправильно выполненная перевязка чревата образованием трещин.

5.  Ошибки при сопряжении несущих стен и перегородок

Сопряжение стен с помощью гибких связей

Недопустимо жёстко сопрягать несущие стены с перегородками, то есть перевязывать их блоками или, например, соединять обрезками арматуры, забитыми в стены. В месте такого сопряжения могут появиться трещины. Дело в том, что несущие и ненесущие стены нагружены по-разному и дают неодинаковую осадку. Чтобы компенсировать её, их сопряжение выполняют с помощью гибких связей (анкеров), допускающих небольшие деформации.

Перевязка блоками

Но друг с другом несущие стены (наружные и внутренние) и перегородки, напротив, должны соединяться жёстко – за счёт перевязки.

6.  Отсутствие армирования в подоконных зонах

Армирование подоконной зоны

Вопреки расхожему мнению, кладку из качественного газобетона армировать не обязательно. Однако всегда следует армировать подоконные зоны, поскольку в углах проёмов концентрируются серьёзные напряжения, и их нужно «снять». Для этого в подоконном ряду боков устанавливают арматуру: она должна выступать за границы проёма с каждой стороны на расстояние не менее 50 см. Обычно применяют два прутка стальной (реже – композитной) арматуры диаметром 8-10 мм.

Прутки укладывают в предварительно выполненные штробы, а затем заливают цементным раствором или клеем для газобетона. При монтаже арматуры в раствор сечение штробы должно быть не менее 40х40 мм, а при монтаже в клеевой состав достаточно сечения 20х20 мм. Каждую штробу выполняют на расстоянии 50-60 мм от края кладки. Также допустимо армировать базальтовыми или стекловолоконными сетками.

Конструкция оконного проёма

Если же строители забыли про армирование подоконных зон, то, скорее всего, появления трещин в углах проёмов не избежать.

7.  Разрывы в армопоясе

Отсутствие армопояса под кровлей приводит к появлению трещин 

Нередко строители забывают про железобетонный армопояс, в частности, под перекрытием по деревянным балкам. Или допускают серьёзные ошибки при его устройстве. Например, в зоне крыши предусматривают армопояс только под мауэрлатом – брусом, который служит опорой для стропил. Но не делают его по фронтонам, то есть не замыкают его в неразрывный контур по периметру здания. В таком случае стропила распирают стены, и появляются трещины в кладке. 

Армопояс под мауэрлат

Вывод: необходимо продолжать армопояс по фронтонам, замыкая его. 

Работы по усилению конструкции дома после его возведения  

В крайнем случае – устранять распор за счёт дополнительных стоек под крышей.

Устройство армопояса при возведении здания

Армопояс нужен для распределения равномерной нагрузки на стены и фундамент здания. Армопояс устраивают в несущих стенах под перекрытиями и крышей. Обычно он представляет собой армированную железобетонную балку сечением не менее 100х100 мм. Эту балку сооружают, например, внутри U-образных газобетонных блоков или между стандартными блоками небольшой толщины (перегородочными). Чтобы дом не промерзал, армопояс закрывают с внешней стороны теплоизоляционными плитами (толщиной 30-50 мм), как правило, из пенополистирола.

8.  Несущий железобетонный каркас в малоэтажном здании

Некоторые заказчики считают газобетон недостаточно прочным материалом и потому при строительстве двух- или трёхэтажного дома предусматривают несущий каркас из монолитного железобетона, который заполняют газобетоном. Это неоправданное и нерациональное усложнение. Кладка из газобетонных блоков является несущей стеной, и потому пользы от такого каркаса нет. А вот вред – ощутимый. Железобетонная конструкция оказывается масштабным мостиком холода, её требуется утеплять. Лишние бетонные работы (опалубка, армирование, раствор) в сочетании с дополнительным утеплением, – всё это значительные траты денег и времени, которые совершенно не нужны.

9.  Паронепроницаемая наружная отделка

Разрушение отделки из-за применения паронепроницаемой штукатурки

Газобетон приходит на стройплощадку, имея повышенную влажность. Кроме того, он пропускает водяной пар, стремящийся из жилых помещений на улицу (чем ниже плотность блоков, тем выше их паропроницаемость). Большая ошибка – «запечатывать» стены из газобетона паронепроницаемой отделкой, например, цементной штукатуркой плотностью более 1300 кг/м3, тем более сразу после завершения кладочных работ. Стены не просохнут от строительной и производственной влажности, что обернётся снижением срока службы как самого газобетона, так и отделки.

Разрушение отделки из-за применения паронепроницаемой штукатурки

Последствия применения высокоплотной цементной штукатурки

Кроме того, не следует возводить кладку из облицовочного керамического кирпича вплотную к газобетонной стене: кирпич менее паропроницаем, чем газобетон. При сооружении такой облицовки оставляют вентиляционный зазор не менее 40 мм между ней и стеной. И обязательны гибкие связи из нержавеющей стали или стеклопластика между кирпичной и газобетонной кладками.

Крепление кирпичной облицовке к стене из газобетона

Другие популярные облицовочные материалы — декоративный бетонный камень и клинкерная плитка. Они также имеют низкую паропроницаемость, и если они будут закрывать более 25% площади фасада, то нужно предусматривать для них вентфасад с подсистемой.

Вентфасад поверх стены из газобетона

10.  Паронепроницаемая теплоизоляция

Если же нужно утеплить газобетонные стены, то безопаснее всего применять паропроницаемую теплоизоляцию – из каменного или стеклянного волокна. А вот с полимерными теплоизоляционными материалами (ЭППС, ППС, ППУ, PIR), имеющими очень низкую паропроницаемость, всё сложнее. В принципе их можно использовать, но с рядом оговорок:

Нельзя крепить их на свежую, не до конца высохшую кладку.

Толщина полимерного утеплителя должна обеспечивать не менее половины термического сопротивления ограждающих конструкций. Например, стену из блоков D500 толщиной 300 мм нужно утеплять плитами из экструдированного пенополистирола толщиной 100 мм и более.

Желательно теплоизолировать полимерными материалами дома, где в постоянном режиме работает приточно-вытяжная вентиляция, удаляющая из помещений избыточный водяной пар.

Подробнее о работе с газобетоном можно узнать на курсах по строительству из Ytong

 

* СТО НОСТРОЙ 2.9.136-2013

** Согласно СП 15.13330.2012

*** СТО НОСТРОЙ 2.9.136-2013

Ошибки при строительстве здания из газобетона

Перегородки из газобетона: толщина, устройство, армирование, видео

Часто в процессе ремонта требуется поставить перегородки, и все чаще для этого используют газобетон (газосиликат). Он легкий — в разы меньше весит, чем кирпич, стенки складываются быстро. Потому перегородки из газобетона ставят в квартирах и домах, независимо от того, из чего сделаны несущие стены.

Содержание статьи

Толщина перегородок из газобетона

Для возведения перегородок внутри помещений выпускаются специальные газосиликатные блоки, имеющие меньшую толщину.  Стандартная толщина перегородочных блоков 100-150 мм. Можно найти нестандарт в 75 мм и 175 мм. Ширина и высота при этом остаются стандартными:

  • ширина 600 мм и 625 мм;
  • высота 200 мм, 250 мм, 300 мм.

Марка газобетонных блоков должна быть не ниже D 400. Это минимальная плотность, которую можно использовать для возведения перегородок высотой до 3 метров. Оптимальная — D500. Можно брать и более плотные — марки D 600, но их стоимость будет выше, зато они имеют лучшую несущую способность: можно будет навешивать на стену предметы при помощи специальных анкеров.

Без опыта марку газобетона определить практически невозможно. Можно «на глаз» увидеть разницу между теплоизоляционными блоками плотность. D300 и стеновыми D600, а вот между 500 и 600 уловить сложно. 

Чем меньше плотность, тем крупнее «пузыри»

Единственный доступный способ контроля — взвешивание. Данные по размерам, объему и массе перегородочных блоков из газобетона приведены в таблице. 

Параметры блоков из газобетона для перегородок

Толщину газобетонных перегородок подбирают по нескольким факторам. Первый — несущая это стена или нет. Если стена несущая, по-хорошему, требуется расчет несущей способности. В реале же их делают той же ширины, что и наружные несущие стены. В основном — из стеновых блоков 200 мм ширины с армированием через 3-4 ряда, как у наружных стен. Если перегородка не несущая, используют второй параметр: высоту.

  • При высоте до 3 метров используют блоки 100 мм шириной;
  • от 3 м до 5 м — толщина блока уже берется 200 мм.

Точнее выбрать толщину блока можно по таблице. В ней учитываются такие факторы, как наличие сопряжения с верхним перекрытием и длинна перегородки.

Выбор толщины перегородки из газобетонных блоков

Устройство и особенности

Если газобетонные перегородки ставят в процессе ремонта и перепланировки квартир или домов, сначала необходимо нанести разметку. Линию обивают по всему периметру: на полу, потолке, стенах. Проще всего это сделать имея лазерный построитель плоскостей. Если его нет, лучше начинать с потока:

  • На потолке отмечают линию (две точки на противоположных стенах). Между ними натягивают малярный шнур, окрашенный синькой или другим каким красящим сухим веществом. С его помощью отбивают линию.
  • Линии на потолке отвесом переносят на пол.
  • Потом линии на полу и потолке соединяют, проводя вертикали по стенам. Если все сделано правильно, они должны быть строго вертикальны.

Следующий шаг возведения перегородки из газобетона — гидроизоляция основания. Пол очищают от мусора и пыли, укладывают гидроизоляционный рулонный материал (любой: пленка, рубероид, гидроизол и т.п.) или промазывают битумными мастиками.

Виброгасящие полосы

Чтобы уменьшить возможность образования тещин и повысить звукоизоляционные характеристики, сверху расстилают виброгасящую полосу. Это материалы с множеством мелких пузырьков воздуха:

  • жесткая минеральная вата — минеральноватный картон;
  • пенополистирол высокой плотности, но небольшой толщины;
  • мягкий ДВП.

На эту полосу на клей укладывается первый ряд блоков. Толщина клея — 2-5 мм, расход при толщине в 1 мм 30 кг/м3. Далее возведение перегородок происходит по той же технологии, что и несущих стен. Подробнее о технологии кладки стены из газобетона читайте тут. 

На коротких пролетах — до 3-х метров — армирование не делают совсем. На более длинных  укладывают армирующую полимерную сетку, перфорированную металлическую полосу, как на фото, и т.п.

Перегородки из газобетона при желании можно армировать

Примыкание к стене

Чтобы обеспечить связь с примыкающими стенами на стадии кладки в швы закладывают гибкие связи — это тонкие металлические перфорированные пластины или Т-образные анкера. Их устанавливают в каждом 3-м ряду.

Связь стены и перегородки при помощи Т-образного анкера

Если перегородка из газосиликата ставится здании, где такие связи не предусмотрены, их можно закрепить на стене, согнув в виде буквы «Г», заведя одну часть в шов.

При использовании анкеров связь со стеной жесткая, что в данном случае не очень хорошо: жесткий стержень от вибраций (ветровых, например) может разрушить прилегающий клей и тело блока. В результате прочности примыкания окажется нулевой. При использовании гибких связей все эти явления не будут так сильно влиять на блоки. В результате прочность связи окажется более высокой.

Гибкие связи в швах, если их нет, пластинки просто прикручивают на саморезы

Для предотвращения образования трещин в углах, между стеной и перегородкой, делают демпферный шов. Это может быть тонкий пенопласт, минеральная вата, специальная демпферная лента, которую используют при укладке теплого пола и другие материалы. Чтобы исключить «подсос» влаги через эти швы, их после кладки обрабатывают паронепроницаемым герметиком.

Проемы в газосиликатных перегородках

Так как перегородки не несущие, нагрузка на них передаваться не будет. Потому над дверьми нет необходимости укладывать стандартные железобетонные балки или делать полноценною перемычку, как в несущих стенах. Для стандартного дверного проема в 60-80 см можно уложить два уголка, которые будут служить опорой для вышележащих блоков. Другое дело, что уголок должен на 30-50 см выступать за проем. Если проем шире, потребоваться может швеллер.

На фото для усиления проема стандартной двери использованы два металлических уголка (справа), в проеме слева замурован швеллер, под которые выбраны пазы в блоках.

Если проем неширокий, и блока стыкуется в нем всего два, желательно подобрать их так, чтобы шов был почти посредине проема. Так вы получите более стабильный проем. Хотя, при укладке на уголки или швеллер, это не стол важно: несущей способности более чем достаточно.

Дверные проемы в газобетонных перегородках

Чтобы металл, пока сохнет клей, не прогибался, проемы усиливают. В нешироких проемах достаточно прибить доски, в широких может потребоваться поддерживающая конструкция, опирающаяся на пол (сложить колонну из блоков под серединой проема).

Еще один вариант того, как можно усилить дверной проем в перегородки из газобетона — сделать армированную ленту из арматуры и клея/раствора. В проем строго горизонтально набивают ровную доску, прибивая ее гвоздями к стенкам. По бокам прибивают/прикручивают боковины, которые будут удерживать раствор.

На доску сверху укладывается раствор, в него — три прутка арматуры класса А-III диаметром 12 мм. Сверху кладут перегородочные блоки, как обычно, следя за смещением швов. Снимают опалубку через 3-4 дня, когда цемент «схватиться».

Проем в перегородке из блоков

Последний ряд — примыкание к потолку

Так как при нагрузках плиты перекрытия могут прогибаться, высоту перегородки рассчитывают так, чтобы она на 20 мм не доходила до перекрытия. При необходимости блоки верхнего ряда распиливают. Получившийся компенсационный зазор можно заделать демпферным материалом: тем же минеральноватным картоном, например. При таком варианте меньше будут слышны звуки с верхнего этажа. Более легкий вариант — смочить шов водой и залить его монтажной пеной.

Звукоизоляция газобетона

Хоть продавцы газосиликатных блоков и говорят о высоких показателях по звукоизоляции, они сильно преувеличивают. Даже стандартный блок толщиной в 200 мм хорошо проводит звуки и шумы, а уж более тонкие перегородочные блоки и подавно.

Сравнительные характеристики по звукоизоляции перегородок из разных материалов

По нормам звуковое сопротивление перегородок не должно быть ниже 43 дБ, а лучше, если оно выше 50 дБ. Это обеспечит вам тишину.

Нормы звукоизоляции для разных помещений

Чтобы иметь представление, насколько «шумны» газосиликатные блоки, приведем таблицу с нормативными показателями звукового сопротивления блоков разной плотности и разной толщины.

Коэффициент звукопоглощения газобетонных блоков

Как видите у блока, толщиной 100 мм он немного не дотягивает до самого низкого требования. Потому, при отделке газобетона, можно увеличить толщину отделочного слоя, чтобы «дотянуть» до норматива. Если же если требуется нормальная звукоизоляция, стены дополнительно обшивают минеральной ватой. Этот материал не является звукоизоляцией, но, примерно, на 50% снижает шумы. В результате звуки почти не слышны. Лучшие показатели имеют специализированные звукоизоляционные материалы, но выбирая их, нужно смотреть, характеристики по паропроницаемости, чтобы не запереть влагу внутри газосиликата.

Если вам нужны абсолютно «тихие» стены, специалисты советуют ставить две тонких перегородки с расстоянием в 60–90 мм, которое заполнить звукопоглощающим материалом.

Дом из газобетона. Варианты стен

  • Одним из самых популярных материалов при проектировании для строительства несущих стен частного дома являются газобетонные блоки. При этом конструкции стен (толщина стены, наружная отделка) могут быть совершенно различными.

Одним из самых популярных материалов при проектировании для строительства несущих стен частного дома являются газобетонные блоки. При этом конструкции стен (толщина стены, наружная отделка) могут быть совершенно различными. Производители газобетонных блоков в своих альбомах технических решений предлагают проектировщикам и строителям различные типы однослойных кладок наружных стен, например такие как:

  1. С отделкой только фасадной штукатуркой.
  2. Со штукатуркой по наружному утеплению.
  3. С непосредственным креплением обшивки к кладке. Материал обшивки – доски внахлест, полимерная плитка, профилированные листы и т.п.
  4. С навесной облицовкой по обрешетке. Лицевой декоративный слой – сайдинг, доски, композитные листы и т.п.
  5. С навесной облицовкой по наружному утеплению. Лицевой декоративный слой – сайдинг, доски, композитные листы и т.п.
  6. С облицовкой кирпичом (камнем) с вентилируемым зазором.
  7. С облицовкой кирпичом (камнем) вплотную с заполнением вертикального шва раствором (кладка без вентилируемого зазора).
  8. С облицовкой кирпичом (камнем) с дополнительным утеплением и вентилируемым зазором.

Из всего многообразия вариантов наиболее популярными остаются следующие:

  1. Газобетонный блок (400 мм) + отделка.
  2. Газобетон блок (300 мм) + утеплитель + отделка.
  3. Газобетон блок (300 мм) + воздушный зазор + облицовочный кирпич.

Делать стены тоньше указанных не рекомендуется, так как, во-первых, это будет отступлением от норм, во-вторых стены будут холодными. Делать толще можно, однако нужно понимать, что это ведет к удорожанию строительства, которое не повлияет на уровень комфорта пребывания в доме. Однако увеличение толщины стены положительно повлияет на затраты на отопление.

Ниже мы расскажем немного подробнее про каждый иp вариантов.

Газобетонный блок (400 мм) + отделка

«Пирог» стены:

  • Газобетонный блок 400 мм
  • Отделка (штукатурка, сайдинг, искусственный камень и т.д.)

По своим теплотехническим характеристикам, при строительстве в Самарской области, газобетон толщиной 400 мм соответствует нормам. При использовании блока толщиной 400 мм нет необходимости в дополнительном утеплении.

  • Требуемое сопротивление теплопередачи: 3,19 (м2 ∙ оС) / Вт
  • Допустимое сопротивление теплопередачи (при потребительском подходе): 2,01 (м2 ∙ оС) / Вт
  • Сопротивление теплопередаче газобетонного блока (400 мм):  2,67 (м2 ∙ оС) / Вт

Снаружи стены достаточно отделать штукатуркой или, например, искусственным камнем. Для отделки используется штукатурка нескольких типов, которые отличаются по своей основе: акриловая (полимерная), минеральная (известковая), силиконовая (органическая смола). Подробнее о каждом типе можно прочитать в статье «Фасадная штукатурка».

Газобетон блок (300 мм) + утеплитель + отделка

«Пирог» стены:

  • Газобетон блок 300 мм
  • Утеплитель 100 мм
  • Отделка (штукатурка, сайдинг, искусственный камень и т.д.)

Наружные стены из газобетонного блока толщиной 300 мм подлежат обязательному утеплению.

  • Требуемое сопротивление теплопередачи: 3,19 (м2 ∙ оС) / Вт
  • Допустимое сопротивление теплопередачи (при потребительском подходе): 2,01 (м2 ∙ оС) / Вт
  • Сопротивление теплопередаче газобетонного блока (300 мм):  2,04 (м2 ∙ оС) / Вт
  • Сопротивление теплопередаче газобетонного блока (300 мм) с утеплителем (100 мм):  4,54 (м2 ∙ оС) / Вт

Основное преимущество использования блока меньшей толщины (300 мм вместо 400 мм) – меньший вес конструкций дома, как следствие меньшие затраты на фундамент дома. При этом стоимость 1 м2 стены приблизительно равна стоимости 1 м2 стены толщиной 400 мм и отделкой штукатуркой.

Газобетон блок (300 мм) + воздушный зазор + облицовочный кирпич

«Пирог» стены:

  • Газобетон блок 300 мм
  • Воздушный зазор 30 мм
  • Облицовочный кирпич 120 мм

Дом из газобетона и облицовочного кирпича – один из «дорогих» вариантов. Тем не менее он имеет ряд преимуществ. Например, «долговечность» кирпичной кладки выше чем у штукатурки – Ваш дом будет радовать Вас и через 10 лет.

Возможность облицовки кирпичом кладки стен из газобетонных блоков следует предусмотреть еще на стадии фундамента, так как ширина фундамента должна позволить одновременное опирание как блоков, так и кирпича.

Между кладкой из блоков и кирпичной кладкой необходимо предусмотреть воздушный зазор, толщиной не менее 30 мм. Свес кладки облицовочного кирпича за пределы фундамента не должен превышать 30 мм. Свес кирпичной кладки над фундаментом необходим если Вы хотите, чтобы отделка цоколя, например, декоративным камнем, была в один уровень с облицовкой.

В проекте домов из газобетона должны учитываться все особенности этого материала. Доверьте разработку проекта своего дома профессионалам. Мы в свою очередь поможем учесть все нюансы и избежать возможные ошибки. А после завершения работ над проектом порекомендуем подрядчика, готового построить Ваш дом.


Заказать индивидуальный проект дома из газобетона


Перейти в каталог готовых проектов


Цены на проекты домов из газобетона


Сравнительная характеристика теплопроводности газобетона. Выбор толщины блока.

Технические характеристики газобетонных блоков

Отопительный сезон зачастую сопряжён с потерей тепла, которое крадут «холодные» стены не из газобетона UDK :-). А потому целесообразно строить или утеплять частный коттедж с использованием пористого материала. Газобетон различают по его плотности, которая измеряется в кг/м3. В зависимости от марки блока, его используют в различных целях: теплоизоляционных — в роли утеплителя, для постройки не высоких зданий, для строительства несущих конструкций высотных зданий.

Маркировка D400 обозначает, что в 1м3 пористого материала находится 400 кг. твёрдых частиц, занимающих 1/3 всей массы блока. Воздушные массы в ячейках являются естественной теплоизоляцией, не позволяющей внутреннему теплу из помещения проникать сквозь них. А потому, чем менее плотный монолит, тем лучше он сохранит тепло. В отличие от других стройматериалов, газобетонные блоки обладают более низкими показаниями теплопроводности. В этом можно убедиться взглянув на данную сравнительную таблицу и наглядные графики.

с Материал Теплопроводность, Вт/м °C
Показатели плотности, кг/м3
D400 D500
Газобетон при уровне влажности 0%0,0960,112
5%0,1170,147
Пенобетон при уровне влажности 0%0,1020,131
5%0,1310,161
Древесина, при уровне влажности 0%0,1160,146
5%0,1810,187

Структура пеноблоков похожа на газобетон, но при этом в пеноблоках замкнутые ячейки и высокие показатели плотности. Геометрия пеноблоков не точна и не совершенна, а потому в роли теплоизоляционного материала намного выгоднее использовать именно газобетон.

Древесина, хоть и является экологически чистым материалом, но когда речь заходит о её качественных теплоизоляционных свойствах, то она значительно проигрывает газобетону, так как не способна в должной мере сохранить тепло.

Однако отметим, что ячеистый блок – дышащий, огнеупорный материал, который отлично справляется со всеми поставленными перед ним задачами. Используя его в строительстве, важно сделать ограждение фундамента и цоколя здания от влаги. Потому как пористая структура может её тянуть в себя. С этой целью применяется рубероид и битум.

Характеристики теплопроводности кирпича и газобетонных блоков

Кирпич — классический вариант стройматериала, используемый для строительства дачных домиков и частных коттеджей. Он морозоустойчив, долговечен и обладает высокой плотностью. Но в отличие от газобетонных блоков, кирпичная стена возводится многослойной. Для того, чтобы дополнительно проложить утепляющие материалы между наружными и внутренними кладками.
 

МатериалПоказатели средней теплопроводности, Вт/м ° C
Газоблок0,08-0,14
Керамические кирпичи0,36-0,42
Красные глиняные кирпичи0,57
Силикатные кирпичи0,71

Выбор толщины блока

Толщина стен влияет на их теплоизоляционные свойства. Чем они толще, тем дольше будет сохранятся комфортная атмосфера внутри жилища.В процессе проектирования ширины ограждений, необходимо учитывать «мостики холода» (толщина цемента для укладки). Блоки монтируют при помощи пазового замка и клеевого раствора. Данный способ гарантирует сохранность тепла, сводя его потери до минимальных значений. Чтобы не платить больше, важно знать некоторые показатели, которыми обладают сборные конструкции стандартной толщины.

МатериалПоказатели толщины наружных стен, см
12 см20 см24 см30 см40 см
Показатели теплопроводности, Вт/м ° C
Белые кирпичи7,514,523,753,122,25
Красные кирпичи6,754,053,372,712,02
Газобетонный блок D4000,820,510,410,320,25

Наилучшими качественными характеристиками на сегодняшний день обладают газобетон ЮДК которые производятся в городе Днепр (Украина). Шесть лет назад (в 2012 г.) завод UDK создал газобетон D400 с показателем прочности — 35 кг/см2. Данные свойства стройматериала позволили значительно сократить глубину наружных стен, что в свою очередь повлияло на себестоимость стройки.

За счёт того, что геометрия блоков ЮДК чёткая и точная, их можно класть на ультратонкий слой клея UDK TBM, благодаря чему в итоге не образуется «мостиков холода». К тому же, за счёт низкого коэффициента теплопотери, наружным стенам не потребуется дополнительное утепление. А высокий уровень прочности газобетона позволяет возводить здания до 5 этажей. При этом не используя монолитный каркас. Срок службы газоблока ЮДК около 100 лет.

Выбор толщины стены из газобетонных блоков ЮДК

СтенаРазмер блока
Наружная стена:D400, D500; В2,5-В2,0;
25-35 кг/см2; 400-500 мм.
Несущая
Не несущая
Жилой дом до 4 этажей, где проживают круглый год
Перегородка:D400, D500; В2,5-В2,0;
25-35 кг/см2; 200-500 мм.
Несущая при условии устройства монолитного пояса
Перегородка:

D500; В2,5;
35 кг/см2; 100-150 мм.

Не несущая

Выбор толщины стен необходимо делать с учётом вида постройки. Для постройки жилого дома у застройщиков пользуется популярностью толщина стены в один слой — 300-400 мм (иногда 500 мм). Ведь однослойные стены – всегда на порядок дешевле, нежели «сэндвичи». Классический стандартный газоблок имеет такие параметры: плотность — D300, D400; прочность В2,0,В2,5. Такой блок подходит для строительства одно- и двухэтажных зданий.


Для загородного дачного домика, куда хозяин наведывается лишь в тёплое время года, а зимой не требуется поддержание в помещении тепла, блока глубиной в 200 мм более чем достаточно. Такие стены прогреются очень быстро, а значит потребуется меньше энергоресурсов.

Для хозяйственных построек, а также гаража, толщину стен необходимо выбирать с учётом частоты нахождения в них. Там должно быть уютно и комфортно. Чтобы влажность и температурный режим были в норме для нужд хозяина помещения, в любое время года.

Определится с толщиной стены из газобетонных блоков, инвестор может исходя из нескольких нюансов. Во-первых, это стоимость газобетона. А она очень выгодная с учётом всех требований. Во-вторых, это типовой проект. Обычно в него закладывают средний показатель толщины стены с указанием температурной зоны и требования к коэффициенту сопротивления теплопередачи, как указано на рисунке ниже.

Для южной части Украины стена может быть более тонкой, нежели в северном регионе страны. Чем тоньше стена – тем большая жилая площадь выйдет в итоге. Естественно, толстые стены крадут жилые метры. Но, при злоупотреблении правилами грамотной стройки, можно существенно потерять на отоплении в зимний период и охлаждении в летний сезон. Ведь сквозь «холодные» стены тепло будет утекать с большой скоростью, а летом наоборот станет невыносимо жарко. К тому же, суммы за отопление и охлаждение помещения дополнительными средствами, увеличатся в разы.

Решение строить здание с толстыми стенами, это опять же не выгодно, ведь необходимо будет потратиться на дополнительный фундамент. Альтернативный и разумный выбор – стены из газобетона. Удовлетворяющие как потребителя, так и застройщика тем, что не дорого стоят и надёжно сохраняют тепло, при этом не мешая помещению «дышать».

На сегодняшний день газобетон ЮДК является оптимальным выбором стройматериала. Долговечный (70-100 лет), надёжный, обладающий низкой теплопроводностью и безупречной геометрией блоков – он находится на пике своей популярности. Благодаря его не высокому объёмному весу идёт меньшая нагрузка на фундамент. Лучше ложатся отделочные материалы и не требуется больших трудозатрат. А разнообразный выбор газобетонных блоков, отличающихся по толщине, прочности и назначению — способен удовлетворить требования большинства застройщиков.

Несущие стены из газобетона: размеры перегородок и толщина

В последнее время газобетон резко набрал популярность в России. При строительстве стен и перегородок частных домов люди в большинстве случаев отдадут предпочтение этому материалу.

Оглавление:

  1. Характеристики и классификация
  2. Толщина стен
  3. Стоимость

Состав

Газобетон — это близкий родственник ячеистого бетона, с той лишь разницей, что в него добавляют алюминиевую пудру, а также используют в качестве заполнителей кварцевый песок и известь. Свое название получил из-за своей пористой структуры, которая образуется при застывании пузырьков в бетонной смеси, а они появляются благодаря реакции алюминиевой пудры с щелочным раствором.

Наличие пор позволяет достигать хорошего соотношения массы/прочности/теплоизоляции, однако снижая звукоизоляцию (35 – 37 дб). Небольшой вес и идеальная геометрическая форма способствует возведению дома в короткие сроки, снижая стоимость услуг строителей. В зависимости от класса его прочность на сжатие колеблется в диапазоне 1,5-3,5 кг/см2 со средним коэффициентом теплопроводности 0,12 Вт/м°С. Стены могут похвастаться также и отличной огнеупорностью: I и II степень пожаробезопасности.

Виды блоков

Главную роль при выборе играет назначение помещения. С повышением толщины и плотности увеличивается уровень звукоизоляции, снижается теплопроводность и пропорционально возрастает стоимость. Размеры газобетонных блоков для несущих стен должны быть не меньше 440 мм (толщина), обладать прочностью не ниже марки B2,5 и плотностью не ниже 500.

В зависимости от прочности газобетон делится на множество классов от B0,5 до B15 (больше — лучше). Низкий показатель (до B2) означает, что стена не может быть частью несущей конструкции, а высокий (например, 10) позволит выдерживать до 10 этажей при правильно подобранной толщине. Регламенту прочности соответствует положение СТ СЭВ 1406.

Также стоит обратить внимание на следующие показатели:

  1. D – плотность (от 300 до 1200 и выше). Несущие конструкции сооружают из конструкционного газобетона: D от 1000. Внутренние стены — из теплоизоляционного: D до 500. Визуально определить высокую плотность можно по размеру пор (чем они меньше — тем плотнее).
  2. М — альтернативная марка мерила прочности (без учета СТ СЭВ 1406). Для возведения несущих перегородок используется М100-200.
  3. F — стойкость к перепадам температур. Число возле F (например, F15) указывает на примерное количество циклов замораживания и оттаивания, которые способен перенести блок без потери качества и разрушения. Морозостойкость — является одной из слабых сторон элементов любых размеров.

Отдельный параметр — способ твердения: он бывает автоклавным и неавтоклавным. В автоклаве происходят реакции гидроксида кальция с оксидом кремния с образованием двухосновным гидросиликатов. На деле это означает в несколько раз более быстрое застывание бетона. Если убрать этап с химическими реакциями — получится неавтоклавный газобетон. Он более быстр и лёгок в производстве, однако его время застывания может достигать нескольких недель.

Как определиться с толщиной блока стены?

В частном доме все зависит от назначения помещения. Чем выше плотность газоблока, тем лучше теплопроводность и несущие характеристики и выше цена. Оптимальная конфигурация для частного дома выглядит следующим образом:

  1. Для гаража, летней кухни, дачи, которым сохранять тепло не критично, можно выбирать элементы, только опираясь на прочность: от D300 и выше и B до 2,0. На толщине экономить не стоит: она должна быть не меньше 200 мм даже для здания в теплом климате. Лучше сделать перегородки из легкого газобетона, а внешние стены — из плотного.
  2. Несущий каркас малоэтажного сооружения рекомендуется выполнить из конструкционно-теплоизоляционного газобетона: марки от D500 до D900 и B от 2 до 4. Второй параметр зависит от количества этажей. С повышением плотности (D) возрастает теплопроводность — лучше выбирать более низкий из возможных показатель D (например, 500). Рекомендуемая толщина равняется 300 мм.
  3. Межкомнатные стены лучше выполнять из газобетона с низкой плотностью (D до 300) и прочностью (B до 1). Толщина подойдет минимальная: до 150 мм.

При возведении легких одноэтажных зданий для экономии можно закупать блоки толщиной 100 мм, но учтите, что в таком случае температура внутри помещения практически не будет отличаться от той, что за окном.

Обратите внимание: официальный российский стандарт толщины несущей стены — 440 мм. Этот показатель высчитан из теплотехнического, изоляционного и конструкторского расчета и является универсальным для большинства случаев малоэтажного строительства. Для перегородок лучше выбрать толщину в несколько раз меньше (например, 100 м).

Особое внимание стоит уделить фундаменту здания. Рекомендуется отдать предпочтение ленточному монолитному типу, дабы защитить дом от усадки, а стены и перегородки — от деформации и появления трещин.

Стоимость газоблока в Москве

Цены, представленные в таблице, могут сильно варьироваться, зависимо от производителя и отдельных характеристик товара.

Рассмотрим расценки на популярный газоблок автоклавного твердения D400 (M10):

Поставщик, производительРазмер блока (ширина, длина, высота), ммСтоимость за 1 м3, руб
ВЕНДОР, YTONG200, 250, 6254 740
Брик Парк, YTONG200, 250, 6254 750
СтройПартнер, Bonolit200, 300, 6253 250
ВЕНДОР, YTONG250, 375, 6254 890
СтройПартнер, CUBI200, 375, 6252 700
Брик Парк, еЗСМ200, 300, 6253 600
СтройПартнер, PORITEP150, 250, 6253 080
Хебель-Блок, YTONG250, 300, 6254 750
Хебель-Блок, YTONG200, 250, 6254 600

Выгоднее делать заказы массово оптом и покупать блоки меньшего размера — так можно достичь экономии до 30% денежных средств. Этот материал также на 20% экономнее кирпича и шлакоблока. Рассмотренный выше блок автоклавного твердения D400 подходит для любых целей малоэтажного строительства — от возведения перегородок до несущего каркаса.


 

Ответы на распространенные вопросы по применению газобетона

  • Какие правила и рекомендации дают производители по хранению блоков на площадке? Что делать, если блоки хранились неправильно и длительное время подвергались воздействию дождя, снега и прочих неблагоприятных факторов?

    Если вы приобрели блоки и оставили их на открытом воздухе, тут не ничего страшного, даже если они у вас промокли в результате дождя или таяния снега. Проблема только в одном, набрав влагу блоки станут тяжелее. Поэтому перед применением вам стоит подождать пару дней, чтоб они высохли на солнце. Если же вы хотите сохранить товарный вид при хранении блоков зимой, стоит их просто накрыть сверху пленкой.

  • Есть ли ограничения по погодным условиям, температуре воздуха, когда строительные работы из газобетона не должны вестись?

    Работа по кладке газобетонных блоков может вестись до -15С с применением зимнего клеевого состава.

  • В какой срок после окончания кладки стен необходимо сделать облицовку фасада?

    Это уже вопрос больше к хозяевам дома, все зависит от их достатка и возможностей. Облицовку стены из газобетонных блоков можно сделать сразу или не делать ее вообще. В г.Рига дома из газобетона без облицовки стоят уже более 75 лет. У нас в Самаре жилые пятиэтажные дома из газобетона стоят без облицовки более 10 лет.

  • Если недостроенный дом из газобетона уходит в зиму без кровли, без отделки фасада, то нужно ли каким то образом защищать стены от воздействия внешних факторов?

    Как правило застройщики в зиму ставят крышу. Если крыша есть, то делать вообще ничего не нужно. Если же крыши нет, желательно верхний ряд блоков накрыть полиэтиленом.

  • Производители дают рекомендации использовать при строительстве из газобетона специальные клеи. Однако нередко застройщики этими рекомендациями пренебрегают. Какие могут быть последствия?

    Клеевой состав не образует мостиков холода и экономит ваши деньги и время. Если застройщик этим пренебрег, то получит некачественную стену, потратит лишние деньги и потеряет много времени.

  • Нужно ли утеплять стены из газобетона?

    Утеплять стену из газобетонных блоков не нужно. Лучше правильно подобрать толщину стены.

  • Какова минимальная толщина стен при строительстве дома из газобетона?

    Толщина стены из газобетонных блоков зависит от назначения строения. Если это холодные помещения (гараж, сарай, летняя веранда), то толщина стены достаточна 200мм., если вы хотите строить дачный домик , то толщина стены 300мм, а если вы хотите построить дом для круглогодичного проживания, то советуем взять блок толщиной 400мм. Еще раз напомню, что утеплять такую стену не нужно.

  • Технология применения

    Технология применения газобетона


    Распечатать Скачать инструкцию, PDF

    1. На время строительства и хранения рекомендуется размещать поддоны на ровной проветриваемой площадке. Штабелировать не более 2 поддонов по высоте.

    2. Во избежание механических повреждений, выгрузку и подъем поддонов необходимо осуществлять с использованием мягких строп или специальной траверсы. При применении мягких строп разгрузо-погрузочные работы производить по одному поддону.

    При применении мягких строп разгрузо-погрузочные работы производить по одному поддону.

    3. Оптимальным фундаментом для дома из газобетонных блоков является монолитная фундаментная армированная плита. Толщина плиты определяется проектом. Армируется в две сетки из композитной арматуры d=10 мм, шаг 200х200 мм. Если применяется стальная арматура, то диаметр ø 14 мм. Плита утепляется снизу и сбоку.

    4. Фундаментная плита обязательно утепляется с торца Пеноплэксом (минимум 2 слоя по 50 мм). В случае устройства «теплого пола» в плите, добавляется утепление Пеноплэксом под плитой (минимум 2 слоя по 50 мм).

    5. Другой вариант утепления: теплый контур (Пеноплэкс, минимум 2 слоя по 50 мм) замыкается поверх фундаментной плиты, поверх утеплителя выполняется стяжка «теплого пола».

    6. Ленточный монолитный армированный фундамент является наиболее распространенным. Глубина заложения, количество стержней арматуры и ее сечение определяют проектом. Рекомендуется применять стальную арматуру.

    7. При устройстве «полов-по-грунту» необходимо замкнуть теплый контур (Пеноплэкс, минимум 2 слоя по 50 мм) под стяжкой «теплого пола»

    8. При устройстве деревянных полов необходимо обеспечить пароизоляцию деревянных конструкций и утеплителя. Утепление полов рекомендуется выполнять минералловатными плитами. Подшивку пола снизу рекомендуется выполнять фибролитовыми плитами.

    9. Вокруг жилого дома рекомендуется устраивать теплую отмостку. Для этого применяется Пеноплэкс 50 мм.

    10. Для приготовления клея в ведро с отмеренным количеством воды, при постоянном перемешивании дрелью, с миксером (см. инструменты), постепенно добавляется клей Krasland ГАЗОБЕТОН-1. В ходе работы сухую смесь периодически перемешивают для поддержания однородной консистенции раствора.

    11. От выполнения кладки первого ряда блоков зависит качество всего дома. Между фундаментом и кладкой необходимо выполнить гидроизоляцию по внешней отметке фундамента. Первый ряд блоков следует укладывать на выравнивающий слой цементно-песчаного раствора Krasland МАСТЕР

    12. К кладке следующего ряда блоков можно приступать после схватывания раствора предыдущего ряда (т.е. через 1-2 часа). Кладка начинается с угла перевязкой блоков, смещение рядов должно быть не менее 10-20 см.

    13. Установка каждого блока контролируется по уровню и шнуру-причалке. Для точного позиционирования блоков в кладке используется резиновая киянка (см. инструменты)

    14. На торцевые стороны блока (тычок) наносить клей с помощью кельмы (см. инструменты), равномерно распределяя его по всей плоскости, при этом захваты клеем заполнять не обязательно.

    15. При использовании блока с системой паз-гребень тычок промазывается по 5 см слева и справа от паз-гребня. Паз-гребень и захват для рук клеем не промазываются.

    16. В случае если длина участка стены не кратна величине целого блока, необходимо устанавливать доборный блок, изготовленный по месту путем обрезки целого блока. Доборный блок рекомендуется изготавливать длинной не менее 200 мм и устанавливать между двух целых блоков.

    17. Доборные блоки легко выпиливаются при помощи ножевки (см. инструменты). Для обеспечения точности резки блоков и соблюдения прямых углов применяется угольник (см. инструменты)

    18. Приготовление клея при помощи зубчатой каретки или кельмы для клеевого раствора ( см. инструменты), подбираемых в зависимости от ширины блоков, наносится на поверхность 2-3 блоков, не оставляя свободных зон.

    19. После завершения очередного ряда блоков поверхность выравнивается с помощью рубанка для газобетона (см. инструбенты). Перепады между соседними блоками не допускаются.

    20. Первый и каждый 3-й ряд кладки необходимо армировать (для сейсмичных районов каждый 2-й ряд). В штробу, предварительно подготовленную ручным штроборезом (см. инструменты) и обеспылену. С помощью щетки-смётки (см. инструменты), заполнить клеевым раствором и уложить арматуру. Клей должен полностью покрывать арматуру. Излишки клея удаляются.

    21. Вместо стержневой арматуры для армирования кладкидопускается применение композитной армирующей сетки, с тем же шагом по высоте, что и для стержневой арматуры. На углах и пересечениях стен, а также при стыковке сетка укладывается с перехлестом.

    22. На углах и пересечениях стен армирование выполнять неприрывно с загибом по форме стены. Для армирования использовать стальную или композитную арматуру периодического профиля. Стальная d=8мм, композитная d=6мм. При стыке арматуры увязывается хомутами или вязальной проволокой.

    23. Внутренние несущие стены и перегородки монтируются с перевязкой с несущими стенами для большей прочности конструкций. Армирование внутренних стен и перегородок связывается с наружными стенами.

    24. В случае, если перегородки выполняются после монтажа несущих стен, необходимо укладывать мелкопористую битумную полимерную ленту. Для улучшения звукоизоляции в месте примыкания к боковой стене также уложить уплотняющую ленту из мелкопористого материала.

    25. Внутренние стены армировать так же, как наружные стены. Для армирования стен толщиной 180 мм или менее использовать один стержень d 8 мм. Для стен толщиной более 180 мм использовать два стержня или композитную армирующую сетку.

    26. Каждый второй ряд перегородки и наружные стены связать оцинкованной стальной перфорированной лентой, ранее установленной в несущей стене. Внутренние и наружные несущие стены перевязывать кладкой или с применением Т-образных анкеров.

    27. Перемычки из U-образных газобетонных блоков

    28. Для перекрытия оконных и дверных проемов из U-образных блоков формируются перемычки нужной длины с учетом ширины проема. Для этого над оконным или дверным проемом устанавливается опалубка из деревянного бруса или металлических профилей.

    29. На торцевую сторону U-образных блоков наносится клей для газобетона

    30. В выемку U-образных блоков укладывается арматурный каркас. Диаметр арматуры и марка бетона для заполнения подбирается по расчету в зависимости от воспринимаемой нагрузки.

    31. U-образный блок заполняется тяжелым бетоном.

    32. Общая схема срорной перемычки из U-образных блоков

    33. На участке опирания перемычек наносится клей при помощи зубчатой каретки или кельмы для клеевого раствора (см. инструменты). Опирание перемычки должно оставлять не менее 200 мм (для сейсмических раойнов смотреть слайд №55)

    34. Для точного выреза оконного проема необходимо использовать направляющую рейку, выставленую и закрепленную по краю проема.

    35. Оконные и дверные проемы сложной формы легко вырезаются ножовкой по газобетону (см. инструменты)

    36. Для формирования необходимого наклона кладки использовать ножовку и рубонок для газобетона (см. инструменты). Поверх стены устраивается антисейсмический (армированный) пояс с применением U-образных блоков.

    37. Верхний ряд блоков под перекрытием выкладывается из U-образных блоков. По всему периметру в U-образных блоках монтируется арматурный каркас. Затем выемка U-образных блоков заливается тяжелым бетоном (по принципу монтажа перемычек)

    38. При устройстве перекрытия из железобетонных пустотных плит, плиты укладываются на сейсмический (армированный) монолитный пояс выплненный из U-блоков, с последующейобвязкой и замоноличиванием плит в единый диск жесткости

    39. Насыпной утеплитель из автоклавного газобетона применяется как уклонообразующая теплоизоляционная засыпка плоских кровлей. Толщина слоя определяется проектом.

    40. Насыпной утеплитель из автоклавного газобетона применяется как теплоизоляционная засыпка чердачных перекрытий. Толщина слоя определяется проектом.

    41. Насыпной утеплитель из автоклавного газобетона применяется как пожаробезопасная теплоизоляционная засыпка печных проходов через деревянные перекрытия. Толщина слоя определяется проектом.

    42. Насыпной утеплитель из автоклавного газобетона отлично подходит для устройства теплоизолирующих засыпных конструкций (завалинка). Толщина слоя определяется проектом.

    43. Насыпной утеплитель из автоклавного газобетона применяется как дринажный материал для водоотвода с придомовой территории. Толщина слоя определяется проектом.

    44. при устройстве деревянных перекрытий, балки перекрытий должны опираться на антисейсмический (армированный) монолитный пояс из U-образных блоков.

    45. При устройстве монолитного железобетонного перекрытия антисейсмический (армированный) пояс не выполняется. Шпильки для крепления мауэрлата выпускаются с шагом 1000 мм, либо мауэрлат закрепляется анкерами.

    46. В зданиях до 2х этажей включительно для площадок с сейсмичностью 7 баллов и в одноэтажных зданиях для площадок с сейсмичностью 8 баллов при расстояниях между стенами не более 6 м в обоих направлениях допускается устройство деревянных перекрытий (покрытий)

    47. Длина опирания деревянных балок на стены из штучных материалов и бетона болжна быть не менее 200 мм. Для расспределения нагрузок от балок, опирание производится на армированный железобетонный антисейсмический пояс

    48. Опорные части балок должны быть надежно закрепленыв несущих конструкциях здания. Часть балки заводимая в кладку, должна быть гидроизолирована. Торец балкиоставить открытым.

    49. Балки перекрытий (покрытий) следует конструктивно связывать с антисейсмическим поясом и устраивать по нимсплошной дощатый диагональный настил.

    50. Армирование перегородок армирующей композитной сеткой производится также, как и несущих стен

    51. Необходимо армировать первый и каждый второй последующий ряды кладки газобетонных блоков. Для стен толщиной 400 мм необходимо применять не менее двух стержней d 8 мм

    52. В районах с сейсмичностью 7, 8 и 9 баллов необходимо устройство вертикальных железобетонных включений в местах пересечения несущих стен, а также в стенах протяженностью более четырех метров с шагом 3-4 метра на всю высоту, предусмотрев заранее арматурные выпуски из фундамента (не менее 4 d 16 мм). Сечение вертикальных железобетонных включений, как правило, принимают не менее 200х200 мм.

    53. Следует армировать зоны под оконными проемами. Арматура должна быть заведена на 900 мм в каждую сторону от края проема.

    54. В уровне перекрытия необходимо устраивать антисейсмический пояс с армированием не менее 4 d 10 мм по всем несущим стенам. Антисейсмический пояс и вертикальные железобетонные включения связать между собой. В зданиях с монолитными железобетонными перекрытиями антисейсмические пояса в уровне этих перекрытий не устраиваются.

    55. На участки опирания перемычек наносится клей при помощи зубчатой каретки или кельмы для клеевого раствора (см. инструменты). При ширине проема до 1500 мм глубина опирания должна составлять 250 мм, а свыше 1500 мм — не менее 350 мм.

    56. Оштукатуривание внутри следует проводить послеполного высыхания кладки (через 2-3 месяца). Перед оштукатуриванием поверхность стены из газобетона обработать укрепляющей пропиткой для внутренних и наружных работ Krasland G02 с увеличенным содержанием дисперсии.

    57. Просохшую после пропитки поверхность оштукатурить суперпластичной цементной штукатуркой с фиброволокнами Krasland ГАЗОБЕТОН-2 (толщина слоя 1-3 см). Рекомендуем применять штукатурную сетку.

    58. После высыхания штукатурного слоя нанести укрепляющую акриловую пропитку Krasland-301 с увеличенным содержанием дисперсии.

    59. После высыхания пропитки провести финишное выравнивание цементной шпатлевкой Krasland ФИНИШ

    60. Допускается выполнять финишное выравнивание полимерной шпатлевкой Krasland ПОЛИМЕР

    61. После высыхания шпатлевки нанести на поверхность грунтовку Krasland 302 c увеличенным содержанием дисперсии

    62. Поверхность готова для нанесения интерьерной краски или поклейки обоев.

    63. Оштукатуривание фасада следует проводить после просыхания штукатурки внутри. Перед оштукатуриванием поверхность стены их газобетона пропитать укрепляющей пропиткой Krasland G02 с увеличенным содержанием дисперсии

    64. Просохшую после пропитки поверхность оштукатурить тонкослойной гидрофобной цементной штукатуркой Krasland ГАЗОбЕТОН-3 с использованием штукатуркной сетки (толщина слоя 0,5 — 1 см)

    65. На высохшую поверхность нанести укрепляющую пропитку Krasland 301 с увеличенным содержанием дисперсии

    66. После высыхание приписки провести финишное выравнивание полимерно-цементной влагостойкой фасадной шпатлевкой Krasland ФИНИШ.

    67. После высыхания шпатлевки прогрунтовать поверхность грунтовкой Krasland 302 с увеличенным содержанием дисперсии.

    68. Окрасить после высыхания гидрофобной силиконо-акриловой краской Krasland F01

    69. Обработать поверхность укрепляющей пропиткой для внутренних и наружных работ Krasland G02 с увеличенным содержанием дисперсии, и дать просохнуть

    70. После высыхания грунтовки нанести на стену заранее заколерованное текстурное покрытие RUGOSO используя хоппер-пистолет, шпатель или кельму. После нанесения сформировать необходимый рельеф.

    71. Крепление кронштейнов системы навесного вентилируемого фасада производить с помощью анкеров. После крепления кранштейнов произвести монтаж профиля.

    72. Установка панелей на систему навесного вентилируемого фасада

    73. Монтаж металлосайдинга на систему навесного вентилируемого фасада

    74. Крепление облицовки производится при помощи системы гибких связей. Связи устанавливать с указанным шагом в шахматном порядке. В качестве связей лопускается применение оцинкованной стальной перфоленты. Шаг установки сохраняется.

    75. Крепление гибких связей в тело газобетонного блока производится анкерным элементом, крепление в кирпичную кладку — утапливанием связи в слой цементно-песчаного раствола.

    76. Гибкие связи обеспечивают создание вентирируемого зазора в 30-50 мм между несущей стеной из газобетона и облицовкой из кирпича.

    77. Для связи с несущей стены из газобетона и облицовочной кирпичной кладки можно применить кладочную базальтовую сетку. Сетка применяется на стадии кладки.

    78. Крепление гибких связей в тело газобетонного блока производится анкерным элементом на глубину не менее 80 мм, крепление в кирпичную кладку — утапливанием связи в слой цементно-песчаного раствора.

    79. Гибкие связи обеспечивают создание вентирируемого зазора в 30-50 мм между несущей стеной из ггазобетона и облицовкой из кирпича. В кирпичной кладке необходимо устраивать продухи понизу и поверху, для циркуляции воздуха, 75 см2 на 20 м2 кладки.

    Как известно энергоэффективность важна не только для стен жилого дома, но и для крыши, перекрытия.

    Многие долго и придирчиво выбирая материалы для стен, упускают важность выбора утеплителя для крыши или перекрытия. Между тем, по статистике, более 40% теплопотерь приходится на некачественно утепленные перекрытия и кровли. В результате постоянных утечек тепла на кровлях образуются наледи, снеговая масса утяжеляется и возрастают нагрузки на кровельные конструкции, что опасно обрушением, а расчистка снежных навалов также затруднена по причине оледенения и прилипания к крыше.

    Для того чтобы избежать всех вышеперечисленных проблем необходимо качественно утеплять перекрытие. И к утеплителю конечно же применяются следующие требования:

    • он должен быть долговечным – не терять свои свойства со временем,
    • он должен быть легким – чтобы не создавать значительную нагрузку на перекрытие,
    • он должен быть негорючим – т.к. по потолкам нередко прокладываются кабельные трассы,
    • он должен быть эффективным – справляться с утеплением минимальным количеством,
    • он должен быть экологичным – дом строится «на века!».

    Для утепления плоских кровель, и чердачных перекрытий удобнее всего применять насыпной утеплитель из автоклавного газобетона, как долговечный и эффективный утеплитель.

    Насыпной утеплитель из газобетона является уникальным тепло- и звукоизоляционным материалом. Он не содержит вредных для человека примесей, не горит, не гниет. Благодаря своей паропроницаемости, способен «дышать», выравнивая влажность в помещении с влажностью окружающей среды, что создает благоприятный микроклимат. Дробленную крошку из ячеистого бетона применяют как утеплитель кровли и пола. Она является прекрасным заменителем керамзита и при этом намного дешевле.

    Варианты утепления чердачного перекрытия:

    Характеристики:

    • Фракция, мм 10 – 40
    • Насыпная плотность, кг/м³ (не более) 400
    • Расчетный коэффициент теплопроводности λб, Вт/м ºС (не более) 0,08
    • Прочность (сдавливанием в цилиндре), МПа (не менее) 0,5
    • Группа горючести НГ

    Область применения:

    • Теплоизоляционная засыпка полов, чердачных перекрытий и пазух многослойных ограждающих конструкций;
    • Уклонообразующая засыпка плоских кровель;
    • Звукоизоляционная подсыпка перекрытий, отделяющих встроенные помещения коммерческого назначения от жилых помещений;
    • Водоудерживающий пористый наполнитель при устройстве стяжек и бетонных подготовок;
    • Может использоваться в качестве сорбента для удаления проливов масел, нефтепродуктов, кислот и щелочей;
    • Для утепления и дренирования дорожных одежд, особенно для бетонных сборных дорожных и аэродромных покрытий, укладываемых по слою песка, посыпанного поверх щебня;
    • Может служить дренажным материалом для устройства водоотвода с придомовой территории и при мелиорации сельскохозяйственных угодий;

    Преимущества:

    • В отличие от керамзита и большинства других насыпных утеплителей, газобетонная крошка, за счет высокой шероховатости поверхности и неправильной формы частиц, не «осыпается». По сформированному уклону можно спокойно ходить, не опасаясь «растоптать» выглаженную поверхность. Низкая теплопроводность.
    • Относится к группе негорючих материалов (по ГОСТ 30244).
    • Является экологически чистым материалом, как и автоклавный газобетон.

    Форма отгрузки:

    • Биг-беги по 1.2 м3

    Формирование уклона плоской кровли:

    Инструкция по применению крошки газобетона в качестве насыпного утеплителя

    Распечатать

    Все об автоклавном ячеистом бетоне (AAC)

    Автоклавный газобетон (AAC) — это сборный железобетон, состоящий из натурального сырья. Впервые он был разработан в Швеции в 1920-х годах, когда архитектор впервые объединил обычную бетонную смесь из цемента, извести, воды и песка с небольшим количеством алюминиевой пудры. Алюминиевая пудра служит расширителем, который заставляет бетон подниматься, как тесто для хлеба. В результате получается бетон, который почти на 80 процентов состоит из воздуха.Бетон AAC обычно превращается в блоки или плиты и используется для строительства стен из цементного раствора, аналогично тому, как это используется для строительства стандартных бетонных блоков.

    Как производится газобетон

    Автоклавный газобетон начинается с того же процесса, который используется для смешивания всего бетона: портландцемент, заполнитель и вода смешиваются вместе, образуя суспензию. При введении алюминия в качестве расширительного агента пузырьки воздуха проникают по всему материалу, образуя легкий материал с низкой плотностью.Влажному бетону придают форму с помощью форм, а затем после его частичного высыхания разрезают на плиты и блоки. Затем блоки перемещаются в автоклав для полного отверждения под действием тепла и давления, что занимает всего от 8 до 12 часов.

    Бетонные блоки AAC очень удобны в обработке, их можно резать и сверлить с помощью обычных деревообрабатывающих инструментов, таких как ленточные пилы и обычные дрели. Поскольку бетон легкий и относительно невысокий, его необходимо испытывать на прочность на сжатие, содержание влаги, объемную плотность и усадку.

    Здание из бетона AAC

    Бетон AAC можно использовать на стенах, полу, панелях крыши, блоках и перемычках.

    • Панели доступны толщиной от 8 дюймов до 12 дюймов и 24 дюймов в ширину и длиной до 20 футов.
    • Блоки бывают длиной 24, 32 и 48 дюймов и толщиной от 4 до 16 дюймов; высота 8 дюймов.

    Затвердевшие блоки или панели из газобетона в автоклаве соединяются с помощью раствора с тонким слоем, используя методы, идентичные тем, которые используются со стандартными бетонными блоками.Для дополнительной прочности стены могут быть усилены сталью или другими конструктивными элементами, проходящими вертикально через пространства в блоках.

    Бетон AAC можно использовать для стен, полов и крыш, а его легкий вес делает его более универсальным, чем стандартный бетон. Материал обеспечивает отличную звуко- и теплоизоляцию, а также прочность и огнестойкость. Однако, чтобы быть долговечным, AAC должен быть покрыт нанесенной отделкой, такой как модифицированная полимером штукатурка, натуральный или искусственный камень или сайдинг.Если они используются для подвалов, то внешняя поверхность стен из AAC должна быть покрыта толстым слоем водонепроницаемого материала или мембраны. Поверхности AAC, подверженные воздействию погодных условий или влаги почвы, будут разрушаться. Внутренние поверхности можно отделать гипсокартоном, штукатуркой, плиткой или краской или оставить незащищенными.

    Свойства газобетона

    По сути, AAC предлагает только умеренные значения изоляции — около R-10 для стены толщиной 8 дюймов и R-12,5 для стены толщиной 10 дюймов. AAC предлагает значение R около 1.25 на каждый дюйм толщины материала. Но AAC имеет высокую тепловую массу, что замедляет передачу тепловой энергии и может значительно снизить затраты на нагрев и охлаждение. А конструкции AAC можно сделать очень герметичными, чтобы уменьшить потери энергии из-за утечек воздуха. AAC также создает отличный звукоизоляционный барьер.

    Недвижимость Газобетон Традиционный бетон
    Плотность (PCF) 25–50 80–150
    Прочность на сжатие (PSI) 360–1090 1000–10000
    Огнестойкость (часы) ≤ 8 ≤ 6
    Теплопроводность (Btuin / ft2-hr-F) 0.75–1,20 6.0–10

    Преимущества и приложения

    Некоторые из преимуществ использования автоклавного газобетона включают:

    • Отличный материал для звукоизоляции и звукоизоляции
    • Высокая огнестойкость и термитостойкость
    • Доступны в различных формах и размерах
    • Высокая тепловая масса накапливает и выделяет энергию с течением времени
    • Вторичный материал
    • Простота в обращении и установке благодаря малому весу
    • Легко режется для пазов и отверстий для электрических и сантехнических линий
    • Экономичность при транспортировке и транспортировке по сравнению с заливным бетоном или бетонным блоком

    Недостатки

    Как и все строительные материалы, у AAC есть ряд недостатков:

    • Товары часто отличаются непостоянством по качеству и цвету.
    • Необработанные внешние стены требуют внешней облицовки для защиты от погодных условий.
    • При установке в среде с высокой влажностью внутренняя отделка требует низкой паропроницаемости, а внешняя — высокой.
    • Значения R
    • относительно низкие по сравнению с энергоэффективной изоляцией стен.
    • Стоимость выше обычной бетонно-блочной и каркасной конструкции.
    • Прочность AAC составляет от 1/6 до 1/3 прочности традиционного бетонного блока.

    Цены на блоки AAC

    Базовый блок AAC стандартного размера 8 x 8 x 24 дюйма стоит от 2,20 до 2,50 доллара за квадратный фут по состоянию на июль 2018 года, что немного больше, чем стандартный бетонный блок, который стоит около 2 долларов за квадратный фут. Однако затраты на рабочую силу для AAC могут быть ниже, поскольку его меньший вес упрощает транспортировку и установку. Стоимость будет варьироваться от региона к региону и зависит от местных ставок оплаты труда и требований строительных норм.

    Автоклавный газобетон: обзор и применение

    Автоклавный газобетон (AAC) — это тип сборного железобетона с расширяющим агентом, который поднимает смесь, подобно дрожжам в хлебном тесте.После затвердевания этот тип бетона содержит около 80% воздуха. Газобетон в автоклаве изготавливается на заводе, и материал формуют в блоки или плиты с точными размерами. Их можно использовать для отделки стен, полов и крыш.

    Как и все материалы на основе цемента, элементы AAC прочные и огнестойкие. Чтобы обеспечить прочность, AAC должен быть покрыт каким-либо типом отделки, например, модифицированной полимером штукатуркой, камнем или сайдингом. AAC также предлагает звуко- и теплоизоляцию.


    Определите лучшие строительные материалы для вашего следующего строительного проекта.


    Автоклавный газобетон выпускается в виде блоков и панелей. Блоки укладываются так же, как и обычные блоки кладки, с тонким слоем раствора. Панели устанавливаются вертикально, от уровня пола до верха стены. Блоки можно размещать вручную, так как AAC весит около 37 фунтов на кубический фут. Однако для установки панелей обычно требуется небольшой кран или другое оборудование из-за их размера.

    Стандартные размеры панелей и блоков перечислены ниже:

    ЭЛЕМЕНТ

    ВЫСОТА

    ШИРИНА

    ТОЛЩИНА

    Панели

    До 20 футов

    24 дюйма

    Доступен в 6, 8, 10 и 12 дюймов

    Блоки

    8 дюймов (наиболее распространенный)

    24 дюйма

    Доступны размеры 4, 6, 8, 10 и 12 дюймов

    Возможны другие специальные формы:

    • U-образные соединительные балки имеют толщину от 8 до 12 дюймов.
    • Блоки для шпунта и паза используются для соединения соседних блоков без раствора по вертикальным краям.
    • Порошковые блоки для создания вертикальных армированных ячеек для раствора.

    Физические свойства

    Автоклавный газобетон изготавливается из смеси цемента, извести, воды, мелкого заполнителя и, как правило, летучей золы. Добавляется расширительный агент, такой как алюминиевый порошок, чтобы вызвать химическую реакцию, создавая пузырьки, которые расширяют смесь. Элементы разрезаются на блоки или панели, армируются, а затем запекаются для более быстрого отверждения.Физические свойства AAC перечислены ниже:

    • Плотность: от 20 до 50 шт. Фут
    • Прочность на сжатие: от 300 до 900 фунтов на кв. Дюйм
    • Термостойкость: от 0,8 до 1,25 на дюйм толщины
    • Допустимое напряжение сдвига: от 8 до 22 фунтов на кв. Дюйм
    • Класс передачи звука: 40 для толщины 4 дюйма и 45 для толщины 8 дюймов

    Преимущества автоклавного газобетона

    Некоторыми полезными свойствами автоклавного газобетона являются:

    • Сочетание изоляционных свойств и структурной целостности стен, полов и крыш.
    • Доступны в различных формах и размерах.
    • Материал, пригодный для вторичного использования.
    • Желоба для кабелепровода и водопровода легко режутся.
    • Гибкость конструкции и конструкции, позволяющая при необходимости вносить изменения в полевые условия.
    • Durable: AAC устойчив к воде, плесени, плесени, гнили и насекомым
    • Стабильность размеров: блоки AAC имеют точную форму с жесткими допусками.
    • Огнестойкость: 8-дюймовым элементам AAC предоставляется четырехчасовой рейтинг, но фактическая производительность обычно превышает это число.AAC негорючий, поэтому он не горит и не выделяет токсичные газы.
    • Значения R
    • стен AAC сопоставимы с обычными каркасными стенами из-за их небольшого веса. Однако они обладают более высокой тепловой массой, воздухонепроницаемостью и звукоизоляцией.

    Ограничения автоклавного газобетона

    Как и любой строительный материал, автоклавный газобетон также имеет технические ограничения:

    • AAC не так широко доступен, как другие традиционные изделия из бетона.Однако его можно легко транспортировать благодаря небольшому весу.
    • AAC имеет более низкую прочность, чем другие бетонные изделия, и требует армирования в несущих конструкциях.
    • Требуется нанесение финишных покрытий для защиты от атмосферных воздействий, поскольку материал пористый и при частом воздействии разрушается.
    • Товар может отличаться по качеству и цвету, обратитесь к производителю.
    • Требуется внешняя облицовка наружных стен для защиты от атмосферных воздействий.
    • По сравнению с другими энергоэффективными изолированными стенами, R-значения относительно ниже.
    • Более высокая стоимость, чем у обычных бетонных блоков и деревянных каркасных конструкций, что может быть проблемой бюджета.

    Устойчивое развитие

    С точки зрения экологичности автоклавный газобетон предлагает преимущества с точки зрения материалов и производительности. Это может снизить воздействие здания на окружающую среду, улучшив при этом контроль температуры в помещении и производительность HVAC.

    Что касается материалов, то он содержит переработанные компоненты, такие как летучая зола и арматура.Это может способствовать получению кредитов LEED или других зеленых рейтинговых систем. AAC также содержит много воздуха, что снижает количество сырья на единицу объема.

    С точки зрения производительности системы из автоклавного ячеистого бетона позволяют создавать плотные ограждающие конструкции, уменьшая утечки воздуха и повышая энергоэффективность. Физические испытания показывают экономию на нагреве и охлаждении от 10 до 20 процентов по сравнению с традиционной конструкцией рамы. Однако в холодном климате экономия может быть меньше, поскольку у AAC меньшая тепловая масса, чем у других типов бетона.

    Газобетон — обзор

    10.3 Материалы и обработка

    Панель FRP / AAC, обсуждаемая в этой главе, состоит из ламинатов CFRP в качестве лицевой панели (кожи) и AAC в качестве основы. Композиты, армированные волокном, обладают высокой устойчивостью к коррозии и изгибу. Соответственно, поскольку AAC является сверхлегким материалом по своей природе, а углепластик является жестким с высокой удельной прочностью, их можно использовать вместе для образования прочных гибридных структурных панелей. В Университете Алабамы в Бирмингеме (UAB) было проведено несколько исследований для изучения поведения структурных панелей CFRP / AAC при осевой и внеплоскостной нагрузке.Khotpal (2004) исследовал прочность на сжатие простого AAC, обернутого углепластиком. Цели состояли в том, чтобы оценить несущую способность ограниченного куба AAC и наблюдать режим разрушения панелей CFRP / AAC. Результаты показали, что обертки из углепластика значительно увеличили прочность на сжатие панелей из углепластика / AAC примерно на 80% по сравнению с обычными панелями из AAC. Уддин и Фуад (2007) исследовали поведение панелей CFRP / AAC, используя образцы небольшого размера при испытании на четырехточечную нагрузку. Экспериментальные результаты этого исследования показали значительное влияние FRP на прочность на изгиб и жесткость гибридных панелей.Муса (2007) также использовал моделирование методом конечных элементов для анализа и проектирования структурных панелей из углепластика / AAC, которые будут использоваться в качестве напольных и стеновых панелей. Муса и Уддин (2009) разработали теоретические формулы для прогнозирования прочности на сдвиг и изгиб панелей CFRP / AAC, и полученные результаты хорошо согласуются с экспериментальными. Кроме того, Mousa (2007) провел сравнительное исследование гибридной панели CFRP / AAC и используемых в настоящее время усиленных панелей AAC. Сравнительное исследование показало, насколько предлагаемые панели экономичны по сравнению с усиленными панелями AAC, которые в настоящее время используются на рынке жилья.Из-за более высокой прочности, получаемой в результате этой комбинации, прочность не является критерием, определяющим конструкцию панели, но прогиб — это тот, который определяет конструкцию предлагаемых гибридных панелей (Mousa, 2007).

    Как упоминалось ранее, панель CFRP / AAC изготавливается из ламинатов CFRP в виде лицевых листов, приклеенных к сердцевине из AAC с использованием термореактивных эпоксидных полимеров, образующих жесткую панель. В целом, газобетон в автоклаве (AAC) — это сверхлегкий бетон с ярко выраженной ячеистой структурой.Это примерно одна пятая веса обычного бетона с насыпной плотностью в сухом состоянии в диапазоне от 400-800 кг / м 3 (25-50 фунтов на фут) и прочностью на сжатие в диапазоне от 2 до 7 МПа (300-1000 фунтов на квадратный дюйм) ( Ши и Фуад, 2005). Низкая плотность и пористая структура придают AAC отличные тепло- и звукоизоляционные свойства, что делает его отличным выбором для использования в качестве основного материала в строительстве. Благодаря ячеистой структуре и уменьшенному весу этот материал обладает высокой огнестойкостью и очень прочным по сравнению с обычным строительным материалом, а также обладает уникальными теплоизоляционными свойствами.

    AAC в настоящее время используется в виде армированных сталью панелей с использованием предварительно обработанной арматуры в качестве внутреннего армирования. Эта арматура будет подвергаться коррозии в течение длительного времени, а также стоит дорого по сравнению с арматурой, используемой для обычного железобетона. Кроме того, эта арматура не играет никакой роли в прочности панелей на сдвиг. Следовательно, панели должны быть толстыми, чтобы преодолеть проблемы сдвига и более низкой прочности на изгиб. Mousa (2007) продемонстрировал, что прочность на сдвиг углепластика / AAC можно значительно улучшить, обернув простой AAC ламинатом из углепластика.Следовательно, общая стоимость армированных панелей AAC может быть снижена за счет использования ламинатов FRP в качестве внешнего армирования (по сравнению с сэндвич-панелями CFRP / AAC) вместо внутренней стальной арматуры в сочетании с низкозатратными методами обработки, которые будут объяснены в этой главе. В таблице 10.1 перечислены механические свойства AAC, которые используются в текущих исследованиях. В настоящем исследовании использовались однонаправленные углеродные волокна SIKA WRAP HEX 103C и смола SIKADUR HEX 300. Механические свойства смолы, а также ламината, предоставленные производителем (Sika Corporation, 2002), перечислены в таблице 10.2.

    Таблица 10.1. Механические свойства простого автоклавного газобетона (AAC)

    Свойство Значение
    Плотность 40 pcf (640 кг / м 3 )
    Прочность на сжатие 456 psi 3,2 МПа)
    Модуль упругости 256 000 фунтов на квадратный дюйм (1800 МПа)
    Прочность на сдвиг 17 фунтов на квадратный дюйм (0,12 МПа)
    Коэффициент Пуассона 0.25

    Таблица 10.2. Механические свойства углеродно-волокнистого композита SIKA

    Свойство SIKA HEX 300 Однонаправленный ламинат
    Прочность на растяжение 10 500 фунтов на кв. Дюйм (72,4 МПа) 123 200 фунтов на кв. Предел прочности при растяжении 90 ° 3500 фунтов на кв. Дюйм (24 МПа)
    Модуль упругости, E x 459000 фунтов на квадратный дюйм (3170 МПа) 10 239 800 фунтов на кв. упругости, E y 459000 фунтов на кв. дюйм (3170 МПа) 705500 фунтов на кв. дюйм (4861 МПа)
    Модуль упругости, G xy 362 500 фунтов на кв.
    Удлинение при растяжении 4.8% 1,12%
    Толщина слоя 0,04 дюйма (1,016 мм)

    В этом исследовании были подготовлены и испытаны три группы панелей при ударе с низкой скоростью. Первый — это простые образцы AAC, которые считаются панелями управления. Второй — панели CFRP / AAC, обработанные методом ручной укладки; Панели были зажаты между верхней и нижней однонаправленной пластиной из углеродного волокна (т. е. ориентация волокон 0 °) для усиления изгиба, а затем обернуты другой однонаправленной пластиной из углеродного волокна (ориентация волокон 90 °, рис.10.1) для сдвиговой арматуры. Третий — это панели CFRP / AAC, имеющие те же характеристики, что и вторая группа, но обработанные с использованием технологии вакуумного литья под давлением (VARTM). В качестве альтернативы трудоемкому процессу ручной укладки VARTM представляет собой привлекательный процесс, поскольку он экономит время обработки, особенно при нанесении нескольких слоев углепластика. VARTM — это процесс формования армированных волокном композитных структур, в котором лист гибкого прозрачного материала, такого как нейлон или майларовый пластик, помещается поверх преформы и затем герметизируется, чтобы предотвратить попадание воздуха внутрь преформы (Perez, 2003).Между листом и преформой создается вакуум для удаления захваченного воздуха. VARTM обеспечивает полное смачивание волокна, гарантирует, что волокно полностью пропитано смолой, и не так утомительно, как метод ручной укладки. VARTM обычно представляет собой трехэтапный процесс, состоящий из укладки волокнистой преформы, пропитки преформы смолой и отверждения пропитанной преформы. Полная процедура обработки панели FRP / AAC с использованием техники VARTM не включена в эту главу для краткости и описана в другом месте (Uddin and Fouad, 2007).Чтобы избежать чрезмерного поглощения смолы ААС из-за поверхности пор, поверхность ААС окрашивают блочным наполнителем. Наполнитель блока состоит из воды, карбоната кальция, винилакрилового латекса, аморфного диоксида кремния, диоксида титана, этиленгиклона и кристаллического кремнезема. Назначение блочного наполнителя — заполнить поверхностные поры, присутствующие на поверхностях панелей AAC, и минимизировать чрезмерное поглощение смолы панелями AAC. Имеет плотность 1461 кг / м 3 . Обычно используется для заполнения пор кирпичной кладки или стен из блоков.Его необходимо наносить на чистые, сухие поверхности, полностью очищенные от грязи, пыли, мела, ржавчины, жира и воска. Его можно наносить с помощью нейлоновой или полиэфирной кисти высшего качества или распылительного оборудования. Время высыхания блочного наполнителя — 2-3 часа. Перед нанесением слоя FRP необходимо выждать 4-6 часов.

    10.1. Принципиальная схема сэндвич-панели CFRP / AAC.

    В таблице 10.3 показаны типы образцов, использованных в этом исследовании, с кратким описанием каждого из них. Все образцы, протестированные в этом исследовании, были 609.8 мм (24,0 дюйма) в длину и 203,3 мм (8,0 дюйма) в ширину. В обозначении образца первая буква указывает тип производственного процесса, используемого для подготовки образца, а вторая буква указывает толщину образца в дюймах. Например, в образце P-1 «P» представляет собой простой образец AAC, а «1» представляет толщину образца, 25,4 мм (1,0 дюйма). Точно так же «H» представляет образец, обработанный вручную, а «V» представляет образец, обработанный VARTM. Точность размеров всех образцов была близка к ± 2.5 мм (0,1 дюйма). Образцы AAC сушили в печи при 70 ° C (158 ° F) для достижения содержания влаги, указанного в стандарте ASTM C 1386 (2007), которое составляет 5-15% по весу.

    Таблица 10.3. Подробная информация об испытательных образцах

    Длина, Ширина, Глубина,
    Образец мм мм мм Внутренний диаметр 903 903 (дюймы) (дюймы)) (дюймы) материал Лицевая панель процесс
    P-1 609,8 (24) 203,2 (8) 25,4 (1) AAC Нет
    P-2 609,8 (24) 203,2 (8) 50,8 (2) AAC Нет
    P-3 609,8 ( 24) 203,2 (8) 76.2 (3) AAC Нет
    H-1 609,8 (24) 203,2 (8) 25,4 (1) AAC Углеродное волокно Sikawrap Hex- 103C Ручная укладка
    H-2 609,8 (24) 203,2 (8) 50,8 (2) AAC Углеродное волокно Sikawrap
    Hex-103C
    Ручная укладка
    Н-3 609,8 (24) 203.2 (8) 76,2 (3) AAC Углеродное волокно Sikawrap
    Hex-103C
    Ручная укладка
    V-1 609,8 (24) 203,2 (8) 25,4 (1) ) AAC Углеродное волокно Sikawrap
    Hex-103C
    VARTM
    V-2 609,8 (24) 203,2 (8) 50,8 (2) AAC Углеродное волокно Sikawrap
    Шестнадцатеричный-103C
    VARTM
    V-3 609.8 (24) 203,2 (8) 76,2 (3) AAC Углеродное волокно Sikawrap Hex-103C VARTM

    Автоклавный газобетон (AAC) — Этот старый дом

    Этот дом AAC в средиземноморском стиле в Найсвилле, штат Флорида, отделан штукатуркой, нанесенной непосредственно на стену, без обрешетки.

    Фото Рика Оливье

    Крис Поат с хлопком зажигает фонарик и приближает пламя к тому, что выглядит как кусок белого хлеба двойной толщины.«Смотри», — говорит строитель из Северной Флориды, его голос раскрывает его австралийские корни. Он поджаривает одну сторону материала — газобетона в автоклаве (AAC) — до вишнево-красного цвета, а затем предлагает посетителю другую сторону. Тост крутой. И он легкий — примерно вдвое меньше бетона, для замены которого его изобрели. «Это только начало», — с ухмылкой говорит Поат. Некоторые называют автоклавный газобетон (AAC) почти идеальным строительным материалом. Запатентованный в 1924 году шведским архитектором, AAC состоит из обычных ингредиентов: портландцемента, извести, кварцевого песка или летучей золы, воды и небольшого количества алюминиевого порошка.Материал является акустически изоляционным, энергосберегающим, устойчивым к огню, гниению и термитам, его можно разрезать ножовкой и превратить в архитектурные детали. Европейцы построили миллион домов и зданий из AAC, но попытки внедрить его здесь потерпели неудачу до недавнего времени, когда проблемы с энергопотреблением и высокие цены на пиломатериалы начали открывать умы для его возможностей.

    Клетчатые бермуды, хлопая вокруг загорелых ног, Поат выскакивает из фургона в дом, который его фирма Advanced Coastal Construction строит из AAC.В тени вдоль залива Чоктохатчи во Флориде 92 градуса по Фаренгейту, но когда Поат входит в недостроенный дом, температура намного ниже, а строительный шум наверху едва проникает через 10-дюймовые стальные армированные панели пола из AAC. Панели изготовлены немецким производителем Hebel, который в 1996 году открыл первый завод AAC в этой стране. (Ютонг, конкурент, открыл здесь завод AAC в 1997 году.) Владелец дома Ричард Гренамайер давно хотел построить дом AAC.«Я читал об этом много лет назад, но он не был доступен», — говорит он. «Мой друг отправил блок Hebel из Германии, чтобы построить свой дом в Таллахасси. Я был взволнован, когда увидел таблички Hebel». По словам Боба Шульдеса, инженера-консультанта Портлендской цементной ассоциации, который изучал историю материала, замедлило прибытие AAC в Соединенные Штаты из-за нежелания некоторых каменщиков изучать новые рабочие привычки. Но посмотрите, как работает Мейсон Марк Харрисон, и трудно понять, почему. «Это просто», — говорит он, разрезая кусок на большой ленточной пиле и прикрепляя его к стене высотой по пояс в другом доме во время турне Поата.Харрисон кладет шпатель, чтобы взять один из блоков AAC. При длине 24 дюйма он больше, чем обычный бетонный блок, а при весе около 30 фунтов он легче, но поскольку он прочный, Харрисону приходится использовать две руки. Американские каменщики привыкли хватать паутину бетонного блока и одной рукой поднимать его на место. Харрисон не против работать двумя руками, но некоторые каменщики никогда не привыкают к разнице.

    Строитель Майк Хавинкин пропускает блок AAC через ленточную пилу, деревообрабатывающий инструмент.Этот конкретный блок будет использоваться на трассе выравнивания, первый ряд AAC поверх фундамента. Но сначала Хавинкин делает выемку для стального арматурного стержня с резьбой.

    Фото Рика Оливье

    AAC поднимается быстрее, чем традиционный бетонный блок. После установки он прочный, с достаточной прочностью на сжатие, чтобы выдержать высоту в три или четыре этажа. По словам партнера Poate Крейга Коула, с креплением на крыше через каждые 12 футов и по углам, AAC отвечает требованиям местной ветровой нагрузки, составляющей 130 миль в час.По словам архитектора Джайлза Бландена, спроектировавшего в этом году дом, построенный из AAC в Чапел-Хилл, Северная Каролина, более высокие требования к ветровой нагрузке требуют только более толстых стен: «У нас была одна стена высотой 14 футов, поэтому мы посоветовались с инженером и построили его толщина 10 дюймов вместо 8 «. Поскольку AAC все еще незнаком, Hebel и Ytong предлагают конструкторскую помощь проектировщикам и строителям. Компании также обучают торговцев.

    Бланден, который проявляет особый интерес к энергоэффективному строительству, говорит, что ячеистые пространства AAC обеспечивают отличную изоляцию.Расчеты Хебеля показывают, что 8-дюймовая стена из AAC имеет R-значение 11, но из-за меньшего проникновения воздуха и увеличенной тепловой массы она превосходит по характеристикам стену из карниза с R-30. «Вы получаете эффект маховика от его массы — уменьшение колебаний температуры, потому что он медленно нагревается или охлаждается», — говорит Бланден. Hebel говорит, что его стены в два с половиной раза более герметичны, чем стандартные деревянные каркасы или бетонные блоки — на самом деле, настолько плотно, — говорит Крейг Коул, что возникает другая проблема: балансировка кондиционирования воздуха.«Дом площадью 2800 квадратных футов будет оставаться прохладным до тех пор, пока не сработает кондиционер», — говорит Коул. «Поэтому мы уменьшили размер кондиционера на тонну и добавили гигростат, так что температура или влажность срабатывают». Недостатки AAC в основном связаны с его новизной. Хотя его можно прикрутить и прибить гвоздями так же легко, как и деревянное, крепление часто не такое прочное — шурупы могут вылететь, а гвозди закрутиться. Пластиковые анкеры помогают, и компания Hebel разработала специальные гвозди с квадратной головкой и квадратной головкой, обеспечивающие лучшую удерживающую способность.Крошечные пятна можно заполнить тонким раствором, но он будет стекать и течет, поэтому для более крупного ремонта требуется более жесткий раствор. Поскольку вода скапливается в открытых порах материала, AAC нельзя оставлять незавершенным более чем на несколько дней.

    Здесь, в северной Флориде, одноэтажный дом со стенами Hebel стоит примерно на 2,5 процента больше, чем сопоставимый каркасный дом с лепными 6-дюймовыми каркасными стенами, говорит Коул. Но экономия энергии окупит разницу менее чем за пять лет, говорит он. Поейт говорит, что более высокая стоимость AAC не позволяет ему попадать на рынок с умеренными ценами, потому что покупатели обеспокоены первоначальными затратами.Покупатели более дорогих домов (от 200 000 долларов и выше в этом регионе) «понимают быструю окупаемость и готовы вложить деньги», — говорит он, припарковывая фургон в своем офисе в Дестине. AAC уже более популярен, чем некоторые предполагали. Энергетический кризис 80-х показал необходимость в энергоэффективном бетонном продукте. Когда строительные нормы отразили эту потребность, американские строители начали пробовать AAC. А теперь, говорит инженер Шульдес, «я бы сказал, что он здесь надолго».

    Конструктивный дизайн — Автоклавный газобетон Aercon AAC

    A = площадь основания стены на основе сплошного поперечного сечения, в 2

    AAC = газобетон в автоклаве

    A s = площадь арматурной стали в армированном элементе или площадь поперечного сечения швартовки, в 2

    A vf = площадь поперечной арматуры в соединительной балке диафрагмы, в 2

    b = ширина или толщина рассматриваемого элемента в

    d = расстояние от крайнего изгибного сжимающего волокна до центра тяжести армирующей стали в армированном элементе, в D = статическая нагрузка на стену из AAC из-за собственного веса, фунт

    E c = модуль упругости бетона с нормальным весом, фунт / кв. Дюйм

    E AAC = модуль упругости AAC, psi

    E s = модуль упругости арматурной стали, psi

    e = эксцентриситет наложенной осевой нагрузки, дюйм

    F = фактическая сила в плоскости наверху стенки сдвига, фунт

    F a = допустимое осевое напряжение сжатия в AAC, фунт / кв. Дюйм

    f a = фактическое осевое напряжение сжатия в AAC, фунт / кв. Дюйм

    F b = допустимое напряжение сжатия при изгибе в AAC, фунт / кв. Дюйм

    f b = фактическое напряжение сжатия при изгибе в AAC, фунт / кв. Дюйм

    f ’ c = минимальная заданная прочность на сжатие обычного бетона, фунт / кв. Дюйм

    f ’ AAC = минимальная заданная прочность на сжатие AAC, фунт / кв. Дюйм

    F s = допустимое растягивающее напряжение в стальной арматуре или креплении, фунт / кв. Дюйм

    f s = фактическое растягивающее напряжение в арматурной стали, фунт / кв. Дюйм

    F t = допустимое напряжение при изгибе при растяжении в AAC, фунт / кв. Дюйм

    f t = фактическое напряжение при изгибе при растяжении в AAC, фунт / кв. Дюйм

    F v = допустимое напряжение сдвига в AAC, фунт / кв. Дюйм

    f v = фактическое напряжение сдвига в AAC по толщине элемента, psi

    h = эффективная высота стены, фут

    H = глубина диафрагмы, измеренная в горизонтальном направлении, фут

    I = момент инерции стены, основанный на твердом поперечном сечении, в 4

    I трещины = момент инерции трещины для бетона нормального веса, в 4

    j = коэффициент, определенный на основе анализа упругости железобетонного профиля

    k = коэффициент, определенный на основе анализа упругости железобетонного профиля

    L = длина поперечной стенки AAC, фут

    M = фактический расчетный момент для анализа, ft k или ft lb

    M , основание = момент, учитываемый в основании стены AAC, фут-фунт

    M конц = допустимый момент для железобетонной секции, когда бетон является контролирующим элементом, фут-фунт

    M max = максимальный момент, возникающий в стене AAC из-за боковой нагрузки, фут-фунт

    M nom = допустимый момент для армированного бетонного профиля нормального веса, фут-фунт

    M otm = опрокидывающий момент для конструкции стены со сдвигом, фут-фунт

    M r = момент сопротивления сдвигу стенки, основанный на статической нагрузке, фут-фунт

    M rAAC = допустимый момент для поперечной стенки AAC, когда изгибное сжатие является контролирующим критерием, фут-фунт

    M арматура = допустимый момент для железобетонной секции, когда арматурная сталь является регулирующим элементом, фут-фунт Mrsteel = допустимый момент для стены, работающей на сдвиг AAC, когда напряжение в швартовке является контролирующим критерием, фут-фунт

    n = модульное соотношение AAC или обычного бетона к арматурной стали

    P ac = допустимая наложенная осевая сжимающая нагрузка для AAC, когда сжимающее напряжение является контролирующим критерием, фунт

    P при = допустимая наложенная осевая сжимающая нагрузка для AAC, когда растягивающее напряжение изгиба является контролирующим критерием, фунт

    P v = допустимая сила в плоскости наверху стенки сдвига, фунт

    R = коэффициент уменьшения статической нагрузки

    r = радиус вращения стены, основанный на твердом поперечном сечении, в

    S = модуль упругости стенки или диафрагмы по твердому поперечному сечению, в 3

    с = расстояние между анкерами, сопротивляющимися подъему, когда прогиб в соединительной балке является критерием контроля, фут

    с м = расстояние между анкерами, противостоящими подъему, когда момент в соединительной балке является критерием контроля, фут

    s v = расстояние между анкерами, сопротивляющимися подъему, когда сдвиг в соединительной балке является контролирующим критерием, фут

    T = сила натяжения, используемая для сопротивления опрокидыванию стенки сдвига, фунт

    T c = растягивающее усилие хорды в системе диафрагмы, фунты или тысячи фунтов

    t = толщина элемента, дюйм

    V = фактическая сила сдвига в месте, представляющем интерес для анализа диафрагмы, фунт

    v = фактическая сила сдвига на единицу длины в месте, представляющем интерес для анализа диафрагмы, PLF

    V AAC = прочность на сдвиг, предоставленная AAC, фунт

    V c = прочность на сдвиг, обеспечиваемая бетоном нормального веса, фунт

    В г = допустимая сила сдвига для залитого шва или соединительной балки для анализа диафрагмы, plf

    V s = прочность на сдвиг, обеспечиваемая арматурой на сдвиг в бетоне нормального веса, фунт

    V u = расчетное поперечное усилие, фунт

    w = расчетное скоростное давление, создаваемое ветром, psf; или равномерная нагрузка для анализа пучка, plf; или наложенная статическая нагрузка, plf wbb = собственный вес соединительной балки, plf

    w вверх = подъемная нагрузка, выдерживаемая несущей балкой, plf

    x = высота над полом, на которой возникает максимальный изгибающий момент в стене AAC, фут

    γ = номинальная насыпная плотность AAC в сухом состоянии, pcf

    γ D = расчетный собственный вес AAC, pcf

    ρ = отношение площади арматуры к площади бетона, As / bd

    µ = коэффициент трения

    Здание с AAC | Журнал Concrete Construction

    В некоторых европейских странах 60% строительства новых домов используют блоки или панели из автоклавного ячеистого бетона (AAC) для возведения наружных стен.AAC также является распространенным строительным материалом на Ближнем Востоке, Дальнем Востоке, в Австралии и Южной Америке, но большинство домовладельцев, строителей и подрядчиков по бетону в Соединенных Штатах никогда не слышали о нем. Дэвид Напье, директор по маркетингу TruStone America, Провиденс, Род-Айленд, говорит, что AAC является одним из самых производимых строительных материалов в мире после бетона. Наконец, AAC начинает завоевывать популярность в Соединенных Штатах, где сейчас есть три завода по производству AAC, и еще несколько запланировано. Это серьезное обязательство, поскольку стоимость завода по производству блоков и панелей из AAC составляет от 30 до 40 миллионов долларов.

    Блоки для возведения стен — сплошные, за исключением отверстий для размещения вертикальной арматуры. Затем их заливают высокопрочным раствором. Рабочие наносят раствор тонким слоем зубчатым шпателем, чтобы соединить блоки вместе.

    AAC был изобретен в Швеции в 1920-х годах архитектором Йоханом Акселем Эрикссоном, который искал альтернативу изделиям из дерева, которых после Первой мировой войны было мало. пудра.Измельченный кремнезем смешивают с водой до образования суспензии. Затем добавляют известняковый порошок, портландцемент и небольшое количество алюминиевого порошка, и смесь быстро заливают в форму. В течение нескольких секунд алюминий вступает в реакцию с известью и цементом, инициируя химическую реакцию с выделением газообразного водорода. Газ образует пузырьки диаметром до 1/32 дюйма, заставляя смесь подниматься, как буханка хлеба. В результате получается материал, который на 80% состоит из пустот по объему.

    После того, как смесь частично застынет, она все еще достаточно мягкая, чтобы ее можно было разрезать проволокой для придания окончательной формы в виде блоков или панелей.Затем детали помещают в автоклавную печь, нагретую паром, при температуре 400 ° F и давлении 13 атмосфер. В автоклаве материал преобразуется в тоберморит, природный минерал, обнаруженный в месторождениях известняка, чья кристаллическая структура имеет некоторые свойства, аналогичные свойствам стекла. Когда продукт появляется через 8–12 часов, он сохраняет все свои готовые свойства. AAC может выдерживать нагрузки до 1100 фунтов на квадратный дюйм, но при этом его вес составляет 1/5 веса бетона.

    ПРЕИМУЩЕСТВА СТРОИТЕЛЬСТВА С AAC

    Автоклавный газобетон изготавливают в виде блоков или панелей.Здесь показаны панели, устанавливаемые на стены жилых домов.

    В отличие от бетонных блоков, блоки AAC твердые, без формованных отверстий под сердечник. Стандартные блоки имеют высоту 8 дюймов, длину 24 дюйма и толщину от 4 до 12 дюймов. Блок 8x8x24 дюймов весит всего 35 фунтов, поэтому с ним легче обращаться, чем с обычным бетонным блоком. AAC также легко обрабатывать и даже резать, просверливать и формировать с помощью деревообрабатывающих инструментов. Напье говорит, что на рынке нет другого материала, который мог бы сравниться с AAC по огнестойкости.Четыре дюйма AAC имеют 4-часовую огнестойкость, что делает его идеальным в коммерческих зданиях для ограждения стальных колонн, окружающих шахт лифтов и других требований пожаротушения.

    Одна из важных причин, по которой владельцы выбирают AAC для строительства дома, — это экономия денег на энергии. Напье называет это «структурной изоляцией» и утверждает, что стена из AAC толщиной 8 дюймов более энергоэффективна, чем стена из 6-дюймовых стоек с изоляцией R-19. Энергоэффективность строительного продукта определяется его значением R, тепловым КПД и влиянием тепловой массы.R-значение материала является мерой его сопротивления кондуктивной теплопередаче, то есть энергии, которая движется от молекулы к молекуле. R-значение типичной стены AAC толщиной 8 дюймов составляет R-10; 10-дюймовая стена — R-12,5, а 12-дюймовая стена — R-15.

    Но R-значение AAC — только один из способов экономии энергии. Как и в случае с бетонной стеной, масса стены AAC сохраняет тепловую энергию, когда температура окружающей среды выше, чем температура стены. Эта энергия высвобождается, когда температура окружающей среды опускается ниже температуры стены.Этот смягчающий эффект может привести к значительной экономии, особенно в климате, где температура сильно меняется в течение 24 часов. А в типичном доме с деревянным каркасом наружный воздух, проходящий через стену, может составлять до 30% затрат на отопление или охлаждение. Напье говорит, что TruStone проверила скорость утечки воздуха для стеновой сборки AAC, что привело к скорости утечки 0,002 фута 3 / мин / фут2 при давлении воздуха 1,57 фунта / фут2, что значительно ниже, чем у гипсокартона. Проникновение воздуха вокруг окон и дверей также может быть важным фактором тепловой эффективности дома.

    Другие причины, по которым людям нравится жить в домах AAC:

    • Они тише, потому что стены из AAC обладают хорошими звукоизоляционными свойствами.
    • Дома
    • AAC устойчивы к ветру и воде, а грызуны или термиты не могут строить дома или туннели в стенах (мягкие стены могут даже остановить пули и осколки).
    • Стоимость и время изготовления оболочек AAC может быть значительно меньше, чем для конструкции с деревянным каркасом.

    Блок из автоклавного газобетона (AAC) Falcon

    АВТОКЛАВНЫЙ ПЕРИОДНЫЙ БЕТОН СТАНДАРТНЫЙ (60 x 20 x ТОЛЩИНА)

    ТОЛЩИНА (см)
    ВЕС на поддон (1 x 1,2 x 1,5 м)
    кг / м 2 кг / шт. кг / поддон шт. M 2 M 3
    7,5 45 5,4 1 080 200 24 1,8
    10 60 7,2 1 080 150 18 1,8
    12,5 75 8,78 1 080 120 14,4 1,8
    15 90 10,53 1 080 100 12 1,8
    17,5 105 12,6 1,134 90 10,8 1,89
    20 120 14,4 1,152 80 9,6 1,92

    JUMBO АВТОКЛАВНЫЙ ПЕРИОДНЫЙ БЕТОН (ТОЛЩИНА 60X40X)

    ТОЛЩИНА (см)
    ВЕС на поддон (1 x 1,2 x 1,5 м)
    кг / м2
    кг / шт.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *